
OS X D2XX Library Version 1.1.12
© Future Technology Devices International Ltd. 2011

DISCLAIMER

This software is supplied on an as-is basis and no warranty as to their suitability for
any particular purpose is either made or implied. Future Technology Devices
International Ltd. will not accept any claim for damages howsoever arising as a result
of use or failure of this software. Your statutory rights are not affected. This software
or any variant of it is not intended for use in any medical appliance, device or system
in which the failure of the product might reasonably be expected to result in personal
injury. This document provides preliminary information that may be subject to change
without notice.

Packages

This package contains 2 different builds of the D2XX driver, located in the following
subdirectories:
10.4: PPC and Intel x86 universal binary compatible with OS X 10.4.x (Tiger).
10.5-10.7: PPC, Intel x86 and Intel x86_64 universal binary compatible with 10.5.x
(Leopard), 10.6.x (Snow Leopard) and 10.7.x (Lion).

Installation

Installing the library is a relatively simple operation which involves copying a file and
making a symbolic link.
Use the following steps to install (these assume you have copied all of the
distribution files to the desktop):

1. Open a Terminal window (Finder->Go->Utilities->Terminal).
2. If the /usr/local/lib directory does not exist, create it (sudo mkdir /usr/local/lib)
3. if the /usr/local/include directory does not exist, create it (sudo mkdir
/usr/local/include)
4. Copy the dylib file to /usr/local/lib (sudo cp Desktop/D2XX/bin/libftd2xx.1.1.12.dylib
/usr/local/lib/libftd2xx.1.1.12.dylib)
5. Make a symbolic link (sudo ln -sf /usr/local/lib/libftd2xx.1.1.12.dylib
/usr/local/lib/libftd2xx.dylib)
6. Copy the D2XX include file (sudo cp Desktop/D2XX/Samples/ftd2xx.h
/usr/local/include/ftd2xx.h
7. Copy the WinTypes include file (sudo cp Desktop/D2XX/Samples/WinTypes.h
/usr/local/include/WinTypes.h)
8. You have now successfully installed the D2XX library.

Samples

The samples provided are simple C written command line based applications that
must be executed from the Terminal window.
To compile and run the samples perform the following steps (these assume you
have copied all of the distribution files to the desktop and installed the library as per

the Installation section above):

1. Open a Terminal window (Finder->Go->Utilities->Terminal).
2. Change to the root samples directory - cd Desktop/D2XX/Samples
3. Build the samples by typing “make” then return. If you have issues at this stage
revisit the installation section to ensure the library is correctly installed. Read the
error messages and try to determine the source of the problem. If you still have
issues then contact support detailing your issue with as much information as
possible.
4. To run an application have a suitable FTDI device with default VID and PID and
change to the Simple directory (cd Simple) then type “./simple” then return(make
sure the dot and the forward slash precede the simple command).
5. If you have issues at this stage then consult the troubleshooting section later in
this document. If the troubleshooting section doesn’t help then contact support with
your problem details.

Upgrading Issues

Upgrading the D2XX library can cause problems such as a reported bug fix does not
appear to be fixed.
This is most likely related to the application executable pointing to a previous version
of the library.

To determine which D2XX library your application is using perform the following
steps (Examples in brackets assume you have copied all of the files to the desktop
and successfully compiled the samples as described above in the Samples section):

1. Open a Terminal window (Finder->Go->Utilities->Terminal).
2. Change directory to the application executable folder (cd
Desktop/D2XX/Samples/Simple)
3. Use otool to determine the library path (otool -L simple)
4. The following test is an example of what is displayed
simple:
 /usr/local/lib/libftd2xx.1.1.12.dylib (compatibility version 0.1.0, current version
1.1.12)
 /usr/lib/libSystem.B.dylib (compatibility version 1.1.12, current version 88.1.6)
5. As illustrated the simple application is pointing to the libftd2xx.1.1.12.dylib.
6. To alter the library that the simple sample points to use the install_name_tool (e.g
install_name_tool -change /usr/local/lib/libftd2xx.1.1.12.dylib
/usr/local/lib/libftd2xx.dylib simple). Please note you may need to change user mode
to perform this function depending on the file permissions set on the executable.
7. Run the otool (illustrated in step 3) to confirm that the library pointed to by the
application has changed and is correct.

Multiple VIDs/PIDs

The current library has a default VID/PID table embedded within to determine if a
particular device will be opened / accessed by the library. This table contains FTDIs
own VID and PIDs therefore if you use FTDI default VID and PIDs this will not
concern your application. There may be a situation when this is not suitable for a

particular application such as custom VIDs and or PIDs. The FT_SetVIDPID API call
can cater for single instances of VID/PID variations however there is a method to
include your own range of VID/PIDs with a custom table.

1. Using xcode open the LibTable.xcodeproj in the LibTable folder.
2. Edit the ftdi_table.c file to include your own VIDs/PIDs
3. Recompile the library.
4. Copy the resultant binary to the /usr/local/lib directory.

If you have trouble with the above procedure (don't know what xcode is / can’t
compile the library) then contact support with your VID/PID requests and we will
provide you with a binary to use. Current workload will ultimately impact on the time
we can provide you with a library therefore it is advised to provided us with the
details at your earliest possible convenience.

Configuration Settings (Advanced users only)

Configuration settings are considered advanced features and are only needed in
certain rare situations. Only alter these settings if it has been suggested by support
or you know exactly what you are doing.

The D2XX configuration file MUST be called ftd2xx.cfg. This is a simple text file
containing various settings and allows for expansion in the future. The file is read on
an FT_Open/Ex only. 3 sections are available for settings – global, VID/PID and
unique. An example of the ftd2xx.cfg file is included in the package and each section
should be self explanatory. The [Globals] section applies to all devices, the
[VID_0403&PID_6001] applies to devices of only VID and PID 0x0403 and 0x6001
and the unique settings apply to only those devices of a particular serial number – in
this case [FT000001].
The configuration file must reside in /usr/local/lib or the /usr/lib folder.

Multithreaded write

It has been noted during beta testing that some multi threaded applications can lock
up during write communication with the devices. This is due to a conflict in the
application run loop and the write run loop. To prevent lockup with a multithreaded
application use the 31st (ConfigFlags=0x40000000) bit in the configuration file. This
will enable an alternative FT_Write that has its own thread and will not conflict with
the current thread run loop operation.

Troubleshooting

Q. Cannot open a port even though installation has been successful.
A1. This is possibly due to the FTDI serial driver holding the port with your VID and
PID. Solution is to uninstall the serial driver (see www.ftdichip.com knowledgebase
on how to do this). To completely eradicate the possibility of this occurring in future it
is recommended a new VID and PID is used to distinguish between devices.
A2. Another possibility is an incorrect VID/PID. Try changing your application to use
the FT_SetVIDPID API call to quickly determine if this is the case.

Q. After running an application two or three times – communication will stop.
A. As described above you should be closing the device on application shutdown.
Trapping application exit is demonstrated in some of the sample programs and for
simple C applications this is one method to circumvent this issue. If you cannot find a
work around then try setting the USB Reset after open bit in the ftd2xx.cfg file (but
only as a very last resort!).

