
AMPDIO DRIVERS

A M P D I O

D R I V E R S

DIGITAL/ANALOGUE
INPUT/OUTPUT

WINDOWS
APPLICATION
INTERFACE

This Instruction Manual is supplied with the AMPDIO drivers to provide the user with sufficient information to utilise the
purchased product in a proper and efficient manner. The information contained has been reviewed and is believed to be
accurate and reliable, however MEV Limited and Amplicon Liveline Limited accept no responsibility for any problems

caused by errors or omissions. Specifications and instructions are subject to change without notice.

© MEV Ltd. with copyright retained by Amplicon Liveline Ltd.

Manual Part No 85989404 iss R3

Prepared by Helen Elcock.

Revised by I.J. Abbott.

Approved for issue by J. Hayward, Product Manager.

AMPDIO DRIVERS

AMPDIO DRIVERS

WINDOWS Analogue and Digital IO Driver Software

TABLE OF CONTENTS

1 INTRODUCTION.. 11
1.1 Windows AMPDIO Drivers.. 11
1.2 Products supported... 11
1.2.1 PC200 Series .. 12
1.2.2 Analogue Input / Output Cards.. 12
1.2.2.1 Analogue Output Cards ... 13
1.2.2.2 Analogue Input Cards .. 13
1.2.2.3 Multi-function Analogue Cards... 13
1.3 Features of the Software... 14
1.3.1 Overview ... 14
1.3.2 Typical Applications... 14
1.4 Windows Installation Program... 15
1.5 Technical Support ... 15
2 GETTING STARTED.. 16
2.1 General Information .. 16
2.2 Installing the Software... 16
2.2.1 Software Installation from CD-ROM.. 16
2.3 Installing ADIO cards in the system.. 16
2.3.1 Installing a card in Windows 7... 16
2.3.1.1 PCI Card .. 17
2.3.1.2 ISA Card .. 17
2.3.2 Installing a card in Windows Vista... 19
2.3.2.1 PCI Card .. 19
2.3.2.2 ISA Card .. 20
2.3.3 Installing a card in Windows XP .. 21
2.3.3.1 PCI Card .. 22
2.3.3.2 ISA Card .. 22
2.3.4 Installing a card in Windows 2000... 24
2.3.4.1 PCI Card .. 24
2.3.4.2 ISA Card .. 24
2.3.5 Installing a card in Windows NT 4.0 .. 26
2.3.5.1 PCI Card .. 26
2.3.5.2 ISA Card .. 26
2.3.6 Installing a card In Windows 95/98/ME ... 26
2.3.6.1 PCI Card .. 26
2.3.6.2 ISA Card .. 27
2.3.7 Installing Multiple Boards in a Single Host PC .. 28
3 DRIVER FUNCTIONS AND CONCEPTS .. 29
3.1 Timer Counter Functions .. 29
3.1.1 Differential Counter ... 29
3.1.2 Monostable Multivibrator ... 30
3.1.3 Astable Multivibrator.. 30
3.1.4 Stopwatch.. 31
3.1.5 Frequency/Period Measurement ... 31
3.1.6 Frequency Generation... 32
3.1.7 Frequency Multiplication.. 32
3.1.8 Pulse Train Generation ... 33
3.1.9 Pulse Width Modulation... 33
3.1.10 Event Counter ... 33
3.2 Digital I/O Functions.. 34
3.2.1 Basic Digital I/O... 34
3.2.2 Switch Matrix ... 35

AMPDIO DRIVERS

3.3 Basic Analogue I/O Functions... 36
3.3.1 Determining Analogue Resources... 36
3.3.2 Channel Masks.. 36
3.3.3 Channel Groups .. 36
3.3.4 Configuring Channels as Bipolar or Unipolar .. 36
3.3.5 Basic Analogue Input .. 37
3.3.6 Basic Analogue Output.. 37
3.3.7 Configuring Analogue Resources on PCI Cards... 38
3.4 Using Interrupts... 38
3.4.1 Event Recorder ... 38
3.4.2 Digitally Controlled Oscillator .. 39
3.4.3 Interrupt Callback .. 39
3.4.3.1 Basic Interrupt Callback... 45
3.4.3.2 Transferring Buffers Under Interrupt Control ... 46
3.4.3.2.1 Acquiring AC Analogue Signals ..48
3.4.3.2.1.1 Controlling Timing for Reading Multiple Analogue Channels..48
3.4.3.2.1.2 Controlling Start of Aquisition on PCI230+ and PCI260+ ...50
3.4.3.2.2 Playing AC Analogue Signals ...51
3.4.3.3 Using Interrupts Without Callbacks.. 51
4 SOFTWARE INSTALLED WITH THE DRIVER... 53
4.1 Installed Software.. 53
4.2 Visual Basic Examples.. 53
4.2.1 Digital IO — INOUT.EXE... 53
4.2.2 Timer — BASICTMR.EXE... 53
4.2.3 Frequency Multiplier — FREQMULT.EXE .. 54
4.2.4 Event Recorder — EVENTREC.EXE.. 54
4.2.5 Digital IO With Interrupts — DIO_EX.EXE .. 54
4.2.6 Voltmeter — METER.EXE... 54
4.2.7 D-to-A Converter — DACSET.EXE... 55
4.2.8 Registerable Board Lister — REGBOARD.EXE ... 55
4.2.9 Stopwatch — STOPWATCH.EXE... 55
4.3 Delphi Examples ... 55
4.3.1 Timer — TIMER.EXE .. 55
4.3.2 Digital IO — INOUT.EXE... 56
4.3.3 Digital IO With Interrupts — PDIO_EX.EXE.. 56
4.3.4 Voltmeter — METER.EXE... 56
4.3.5 Oscilloscope — OSSCOPE.EXE .. 56
4.3.6 Signal Generator — SIGGEN.EXE ... 56
4.4 Agilent VEE Pro / Hewlett Packard HP VEE Examples .. 57
4.4.1 ADC Test — ADCTEST.VEE .. 57
4.4.2 DAC Test — DACTEST.VEE .. 57
4.4.3 Digital Input — DIGINPUT.VEE .. 57
4.4.4 Timer Demo — TIMERDEM.VEE.. 57
4.5 Win32 Console Examples in C.. 57
4.5.1 Capture Analogue Input to Comma-Separated Variables (CSV) or Binary File 58
4.6 Visual Basic .NET Examples .. 59
4.6.1 Digital IO — InOut_VBNET.exe .. 59
4.6.2 Digital IO With Interrupts — DIO_EX_VBNET.exe and DIO_EX2_VBNET.exe.......................... 59
4.6.3 Voltmeter — Meter_VBNET.exe ... 59
4.7 Visual C# .NET Examples... 59
4.7.1 Digital IO — InOut_CSHARP.exe ... 60
4.7.2 Digital IO With Interrupts — DIO_EX_CSHARP.exe and DIO_EX2_CSHARP.exe.................... 60
4.7.3 Voltmeter — Meter_CSHARP.exe .. 60
4.8 DIO_TC.DLL Source Code ... 60
4.9 SYS_DLLS.. 61
5 STRUCTURE AND ASSIGNMENTS OF THE REGISTERS ... 62
5.1 Register Assignments on Series 200 DIO Cards.. 62

AMPDIO DRIVERS

5.2 Register Grouping... 62
5.2.1 Cluster X, Y and Z Groups .. 62
5.2.2 Counter Connection Register Group... 62
5.2.3 Interrupts Group .. 62
5.3 The Drivers View of The Register Layout ... 62
5.4 The Register Details ... 65
5.4.1 82C55 Programmable Peripheral Interface Registers... 65
5.4.1.1 82C55 Programmable Peripheral Interface PPI Data Register Port A 65
5.4.1.2 82C55 Programmable Peripheral Interface PPI Data Register Port B 66
5.4.1.3 82C55 Programmable Peripheral Interface PPI Data Register Port C 67
5.4.1.4 82C55 Programmable Peripheral Interface PPI Command Register 68
5.4.2 82C54Counter Timer Registers... 70
5.4.2.1 82C54 Counter 0 Data Register .. 70
5.4.2.2 82C54 Counter 1 Data Register .. 71
5.4.2.3 Counter 2 Data Register .. 72
5.4.2.4 Counter/Timer Control Register... 73
5.4.3 Clock and Gate Configuration Registers... 75
5.4.3.1 Group Clock Connection Registers ... 76
5.4.3.2 Group Gate Connection Registers .. 77
6 PROGRAMMING WITH THE AMPDIO DRIVER... 79
6.1 Windows DLL and Examples .. 79
6.2 Support in DOS... 79
6.2.1 Windows Library Source Code.. 79
6.3 Using the Dynamic Link Library .. 80
6.3.1 C/C++ .. 80
6.3.1.1 Microsoft C/C++... 80
6.3.1.2 Borland C++... 80
6.3.2 Visual Basic 5.0 and 6.0.. 81
6.3.3 Delphi 3.0 Onwards... 82
6.3.4 Visual Basic .NET.. 83
6.3.5 Visual C# .NET.. 85
6.4 DIO_TC.DLL Library Functions... 86
6.4.1 Initialization Functions ... 87
6.4.1.1 Register a Board with the Library — registerBoard ... 87
6.4.1.2 Extended Register Board Function — registerBoardEx .. 88
6.4.1.3 Register a PCI Board by Model, Bus and Slot Position — registerBoardPci........................... 88
6.4.1.4 Get the Model Number of a Board — GetBoardModel .. 89
6.4.1.5 Get Board Base Address — GetBoardBase.. 90
6.4.1.6 Get Board IRQ — GetBoardIRQ ... 90
6.4.1.7 Get Board PCI Bus Position — GetBoardPciPosition.. 90
6.4.1.8 Unregister a Board — FreeBoard.. 91
6.4.1.9 Get Driver Version — DIO_TC_driverVersion ... 91
6.4.1.10 Get DLL Version — DIO_TC_dllVersion.. 92
6.4.1.11 Get Hardware Version — DIO_TC_hardwareVersion ... 92
6.4.1.12 Get Real Hardware Version — DIO_TC_realHardwareVersion .. 93
6.4.1.13 Control Hardware Reinitialization — DIO_TC_SetResetOnRegister 94
6.4.1.14 Check Whether Hardware Will be Reinitialized — DIO_TC_GetResetOnRegister................. 94
6.4.2 Interrupt Control Functions.. 95
6.4.2.1 Enable a Board's Interrupts — enableInterrupts.. 95
6.4.2.2 Disable a Board's Interrupts — disableInterrupts .. 95
6.4.2.3 Check whether a Board's Interrupts are Enabled — interruptsEnabledP................................ 96
6.4.2.4 Enable a Board's Interrupt Source(s) — setIntMask ... 96
6.4.2.5 Check Which Interrupt Sources are Enabled — getIntMask ... 97
6.4.2.6 Read Interrupt Status Register — getIntStat ... 97
6.4.2.7 Enable an Individual Interrupt Source — TCenableInterruptChip.. 98
6.4.2.8 Disable an Individual Interrupt Source — TCdisableInterruptChip .. 99
6.4.3 Thread Priority Control .. 99
6.4.3.1 Set Real Time Priority — DIO_TC_getrealtimepriority .. 99

AMPDIO DRIVERS

6.4.3.2 Set Normal Priority — DIO_TC_restorenormalpriority... 100
6.4.3.3 Get Priority of User Interrupt Thread — TCgetInterruptThreadPriority.................................. 100
6.4.3.4 Set Priority of User Interrupt Thread — TCsetInterruptThreadPriority 101
6.4.4 Data Buffer Functions.. 102
6.4.4.1 Allocate a Short Integer Data Buffer — allocateIntegerBuf ... 102
6.4.4.2 Allocate a Long Integer Data Buffer — allocateLongBuf ... 102
6.4.4.3 Free up a Short Integer Data Buffer — freeIntegerBuf.. 102
6.4.4.4 Free up a Long Integer Data Buffer — freeLongBuf.. 103
6.4.4.5 Read Data from a Short Integer Buffer — readIntegerBuf... 103
6.4.4.6 Read Data from a Long Integer Buffer — readLongBuf .. 104
6.4.4.7 Write Data to a Short Integer Buffer — writeIntegerBuf... 104
6.4.4.8 Write Data to a Long Integer Buffer — writeLongBuf .. 104
6.4.4.9 Copy a Block of Data to a Short Integer Buffer — copyToIntegerBuf 105
6.4.4.10 Copy a Block of Data to a Long Integer Buffer — copyToLongBuf 105
6.4.4.11 Copy a Block of Data from a Short Integer Buffer — copyFromIntegerBuf 106
6.4.4.12 Copy a Block of Data from a Long Integer Buffer — copyFromLongBuf............................... 106
6.4.4.13 Query Current Interrupt Position within a Short Integer Data Buffer — getIntegerIntItem..... 107
6.4.4.14 Query Current Interrupt Position within a Long Integer Data Buffer — getLongIntItem 107
6.4.5 Basic Timer/Counter Functions... 108
6.4.5.1 Test if Timer/Counter is Free — TCisAvailable ... 108
6.4.5.2 Free-up Timer/Counter — TCfreeResource .. 108
6.4.5.3 Connect Timer/Counter Clock Source — TCsetClock... 109
6.4.5.4 Get Connected Timer/Counter Clock Source — TCgetClock.. 110
6.4.5.5 Get Linked Clock Channel — TCgetLinkedClockChannel .. 110
6.4.5.6 Connect Timer/Counter Gate Source — TCsetGate ... 111
6.4.5.7 Get Connected Timer/Counter gate Source — TCgetGate... 112
6.4.5.8 Get Linked Gate Channel — TCgetLinkedGateChannel... 113
6.4.5.9 Configure Timer/Counter Mode — TCsetMode... 114
6.4.5.10 Read Timer/Counter Status — TCgetStatus ... 115
6.4.5.11 Get Timer/Counter Mode — TCgetMode... 115
6.4.5.12 Set Timer Count Value — TCsetCount.. 116
6.4.5.13 Set two Timer Count Values — TCsetCounts ... 117
6.4.5.14 Read Timer's current Count Value — TCgetCount ... 118
6.4.5.15 Read Timer's current Up-Count — TCgetUpCount ... 118
6.4.5.16 Reads Two Timer’s current Count Values — TCgetCounts .. 119
6.4.5.17 Gets a Timer’s Initial Count Value — TCgetInitialCount.. 120
6.4.6 Differential Counter Functions... 121
6.4.6.1 Set-up Differential Counter Pair — TCsetDiffCounters.. 121
6.4.6.2 Read Differential Count — TCgetDiffCount ... 123
6.4.6.3 Read Differential Ratio — TCgetRatio... 123
6.4.6.4 Free Differential Counter Pair — TCfreeDiffCounters ... 124
6.4.7 Millisecond Stopwatch, Event Recorder and Event Counting Functions 124
6.4.7.1 Prepare a Millisecond Stopwatch — TCsetStopwatch .. 124
6.4.7.2 Start a Millisecond Stopwatch — TCstartStopwatch ... 125
6.4.7.3 Get Stopwatch Elapsed Time — TCgetElapsedTime.. 126
6.4.7.4 Prepare an Event Time Recorder — TCsetEventRecorder... 126
6.4.7.5 Free-up Event Recorder Timer and Digital Input Channels — TCfreeEventRecorder 127
6.4.7.6 Convert Milliseconds into Time String — TCgetTimeStr ... 127
6.4.7.7 Free-up Stopwatch Counter/Timers — TCfreeStopwatch ... 128
6.4.7.8 Prepare a 32-Bit Event Counter — TCsetEventCounter ... 128
6.4.7.9 Reset a 32-bit Event Counter — TCresetEventCounter.. 129
6.4.7.10 Read a 32-bit Event Counter — TCgetEventCount ... 130
6.4.7.11 Free up 32-bit Event Counter — TCfreeEventCounter.. 130
6.4.8 Frequency/Pulse Generation Functions.. 131
6.4.8.1 Send Monostable Pulse — TCsetMonoShot ... 131
6.4.8.2 Generate Astable Multivibrator Waveform — TCsetAstable ... 132
6.4.8.3 Free-up Astable Multivibrator Counter/Timers — TCfreeAstable .. 133
6.4.8.4 Generate a Frequency — TCgenerateFreq... 133
6.4.8.5 Generate an Accurate Frequency — TCgenerateAccFreq ... 134

AMPDIO DRIVERS

6.4.8.6 Generate a Pulse — TCgeneratePulse ... 135
6.4.8.7 Set up a Periodic Pulse Train Generator — TCsetPeriodicPulseTrain 136
6.4.8.8 Change Periodic Pulse Train’s Gate Input — TCchangePeriodicPulseTrainGate 138
6.4.8.9 Change Periodic Pulse Train’s Train Frequency — TCchangePeriodicPulseTrainFreq 139
6.4.8.10 Change Periodic Pulse Train’s Pulse Count — TCchangePeriodicPulseTrainCount............ 140
6.4.8.11 Change Periodic Pulse Train’s Train Duration — TCchangePeriodicPulseTrainDuration 140
6.4.8.12 Control a Periodic Pulse Train Generator's Timer Channels —

TCcontrolPeriodicPulseTrain ... 141
6.4.8.13 Free a Periodic Pulse Train Generator — TCfreePeriodicPulseTrain 142
6.4.8.14 Set up a Restricted Periodic Pulse Train Generator — TCsetRestrictedPulseTrain 143
6.4.8.15 Change Restricted Periodic Pulse Train’s Gate Input —

TCchangeRestrictedPulseTrainGate... 144
6.4.8.16 Change Restricted Periodic Pulse Train’s Frequency —

TCchangeRestrictedPulseTrainFreq ... 145
6.4.8.17 Change Restricted Periodic Pulse Train’s Pulse Count —

TCchangeRestrictedPulseTrainCount ... 146
6.4.8.18 Control a Restricted Periodic Pulse Train Generator's Timer Channels —

TCcontrolRestrictedPulseTrain.. 146
6.4.8.19 Free a Restricted Periodic Pulse Train Generator — TCfreeRestrictedPulseTrain............... 147
6.4.8.20 Set up a Hardware-Triggered One-Shot Pulse Train Generator —

TCsetOneShotPulseTrain.. 148
6.4.8.21 Change One-Shot Pulse Train’s Trigger Input — TCchangeOneShotPulseTrainTrigger 150
6.4.8.22 Change One-Shot Pulse Train’s Pulse Count — TCchangeOneShotPulseTrainCount 151
6.4.8.23 Change One-Shot Pulse Train’s Train Duration —

TCchangeOneShotPulseTrainDuration ... 151
6.4.8.24 Control a Hardware-Triggered One-Shot Pulse Train Generator's Timer Channels —

TCcontrolOneShotPulseTrain.. 152
6.4.8.25 Free a Hardware-Triggered One-Shot Pulse Train Generator —

TCfreeOneShotPulseTrain .. 153
6.4.8.26 Set up a Programmable Width Pulse Generator — TCsetPWPulse 153
6.4.8.27 Change Programmable Width Pulse Generator's Duty Cycle —

TCchangePWPulseDutyCycle ... 155
6.4.8.28 Change Programmable Width Pulse Generator's Period — TCchangePWPulsePeriod....... 155
6.4.8.29 Control a Programmable Width Pulse Generator's Timer Channel — TCcontrolPWPulse ... 156
6.4.8.30 Free a Programmable Width Pulse Generator — TCfreePWPulse....................................... 157
6.4.8.31 Set up a Pulse Width Modulated Pulse Train Generator — TCsetPWMTrain....................... 157
6.4.8.32 Change Pulse Width Modulated Pulse Train Generator's Gate —

TCchangePWMTrainGate ... 159
6.4.8.33 Change Pulse Width Modulated Pulse Train Generator's Frequency —

TCchangePWMTrainFreq.. 160
6.4.8.34 Change Pulse Width Modulated Pulse Train Generator's Duty Cycle —

TCchangePWMTrainDutyCycle... 161
6.4.8.35 Control a Pulse Width Modulated Pulse Train Generator's Timer Channels —

TCcontrolPWMTrain .. 162
6.4.8.36 Free a Pulse Width Modulated Pulse Train Generator — TCfreePWMTrain 163
6.4.9 Frequency Input and Regeneration Functions .. 163
6.4.9.1 Measure Period of an External Signal — TCgetExtPeriod .. 163
6.4.9.2 Measure Frequency of an External Signal — TCgetExtFreq .. 164
6.4.9.3 Measure Frequency of an External Signal Over a Fixed Period —

TCgetExtFreqRestricted .. 165
6.4.9.4 Multiply an External Frequency — TCmultiplyFreq ... 166
6.4.9.5 Divide an External Frequency — TCdivideFreq .. 167
6.4.10 Digitally Controlled Oscillator Functions.. 168
6.4.10.1 Prepare a Digitally-Controlled Oscillator — TCsetDCO .. 168
6.4.10.2 Prepare a User-Controlled Oscillator — TCsetUserCO .. 169
6.4.10.3 User Controlled Oscillator Callback — TCUserCOCallback.. 170
6.4.10.4 Set User Controlled Oscillator Output Level — TCsetUserCOLevel 171
6.4.10.5 Free-up a DCO or User CO’s Timer/Counters — TCfreeDCO.. 171
6.4.11 Digital Input/Output Functions ... 172

AMPDIO DRIVERS

6.4.11.1 Test if Digital I/O Chip is Free — DIOisAvailable... 172
6.4.11.2 Configure a Digital I/O Port for Input or Output — DIOsetMode.. 172
6.4.11.3 Check Digital I/O Port Direction — DIOgetMode... 173
6.4.11.4 Re-define Channel Width within a Digital I/O Chip — DIOsetChanWidth.............................. 174
6.4.11.5 Send Digital Output Data — DIOsetData... 175
6.4.11.6 Read Digital Input Data — DIOgetData ... 175
6.4.11.7 Configure a Digital I/O Port Mode — DIOsetModeEx.. 176
6.4.11.8 Check a Digital I/O Port's Mode — DIOgetModeEx .. 176
6.4.11.9 Write to Digital Output Port — DIOsetDataEx ... 177
6.4.11.10 Read Digital Input Data Port — DIOgetDataEx ... 178
6.4.12 Switch Scanner Matrix Functions.. 178
6.4.12.1 Set up a Switch Scanner Matrix — DIOsetSwitchMatrix ... 178
6.4.12.2 Query Status of a Switch within the Scan Matrix — DIOgetSwitchStatus 179
6.4.12.3 Free-up the Digital I/O Chip(s) from a Switch Matrix — DIOfreeSwitchMatrix 179
6.4.13 Basic User Interrupt Callbacks.. 180
6.4.13.1 Prepare a Basic User Interrupt — TCsetUserInterrupt.. 180
6.4.13.2 Prepare a Basic User Interrupt for Analogue Input — TCsetUserInterruptAIO 182
6.4.13.3 Prepare a Basic User Interrupt for Miscellaneous Input — TCsetUserInterrupt2.................. 183
6.4.13.4 Basic User Interrupt Callback — TCUserCCallback.. 185
6.4.13.5 Free up a User Interrupt — TCfreeUserInterrupt... 185
6.4.14 Buffered User Interrupt Callbacks ... 186
6.4.14.1 Prepare a Buffered User Interrupt — TCsetBufferUserInterrupt ... 186
6.4.14.2 Prepare a Buffered User Interrupt for Analogue I/O — TCsetBufferUserInterruptAIO.......... 188
6.4.14.3 Prepare a Buffered User Interrupt for Miscellaneous I/O — TCsetBufferUserInterrupt2 190
6.4.14.4 Buffered User Interrupt Callback — TCUserCBCallback .. 192
6.4.15 Non-Callback Buffered User Interrupts ... 193
6.4.15.1 Prepare a Non-Callback Buffered User Interrupt — TCsetNCBufferUserInterrupt 193
6.4.15.2 Prepare a Non-Callback Buffered User Interrupt for Analogue I/O —

TCsetNCBufferUserInterruptAIO ... 195
6.4.15.3 Prepare a Non-Callback Buffered User Interrupt for Miscellaneous I/O —

TCsetNCBufferUserInterrupt2 ... 196
6.4.15.4 Transfer Data for Non-Callback Buffered User Interrupt —

TCdriveNCBufferUserInterrupt .. 198
6.4.15.5 Poll or Wait for Interrupt Data Buffer Ready for Non-Callback Buffered User Interrupt —

TCwaitNCBufferReady .. 199
6.4.15.6 Poll or Wait for Interrupt Data Buffer Ready for Multiple Non-Callback Buffered User

Interrupts — TCwaitMultiNCBufferReady.. 200
6.4.16 Miscellaneous Interrupt Handling Functions ... 201
6.4.16.1 Check User Interrupt for Occurrence of Error — TCcheckUserInterruptError 201
6.4.16.2 Flush (Discard) User Interrupt Data — TCflushUserInterrupt ... 202
6.4.16.3 Expedite Read User Interrupt — TCexpediteReadUserInterrupt .. 203
6.4.16.4 Check User Interrupt Data Available — TCcheckUserInterruptDataAvailable 204
6.4.16.5 Enable a User Interrupt — TCenableUserInterrupt ... 204
6.4.16.6 Disable a User Interrupt — TCdisableUserInterrupt.. 205
6.4.17 Analogue I/O Resource Management ... 206
6.4.17.1 Test if ADC Interrupt Source is Free — AIOADCisAvailable... 206
6.4.17.2 Determine Number of ADC Channel Groups — AIOcountADCgroups 206
6.4.17.3 Determine Number of ADC Channels in a Group — AIOcountADCchans............................ 207
6.4.17.4 Determine ADC Channel Group’s Interrupt Source — AIOADCgroupIntChip....................... 207
6.4.17.5 Determine whether ADC Channel Group has a FIFO — AIOADCgroupHasFIFO................ 208
6.4.17.6 Determine whether ADC Channel Group has a FIFO and Get its Size —

AIOgetADCgroupFIFOsize .. 208
6.4.17.7 Test if DAC Interrupt Source is Free — AIODACisAvailable... 209
6.4.17.8 Determine Number of DAC Channel Groups — AIOcountDACgroups 209
6.4.17.9 Determine Number of DAC Channels in a Group — AIOcountDACchans............................ 210
6.4.17.10 Determine DAC Channel Group’s Interrupt Source — AIODACgroupIntChip....................... 210
6.4.17.11 Determine whether DAC Channel Group has a FIFO — AIODACgroupHasFIFO................ 211
6.4.17.12 Determine whether DAC Channel Group has a FIFO and Get its Size —

AIOgetDACgroupFIFOsize .. 211

AMPDIO DRIVERS

6.4.18 Analogue I/O Configuration ... 212
6.4.18.1 Query ADC Software Bipolar/Unipolar Settings — AIOgetADCchanMode 212
6.4.18.2 Query ADC Hardware Bipolar/Unipolar Settings — AIOgetHWADCchanMode.................... 212
6.4.18.3 Configure ADC Software Bipolar/Unipolar Settings — AIOsetADCchanMode...................... 213
6.4.18.4 Configure ADC Hardware Bipolar/Unipolar Settings — AIOsetHWADCchanMode 213
6.4.18.5 Configure ADC All Channels Bipolar or Unipolar — AIOsetAllADCchanMode...................... 214
6.4.18.6 Query ADC Hardware Single-ended/Differential Settings — AIOgetHWADCchanDiff.......... 214
6.4.18.7 Configure ADC Hardware Single-ended/Differential Settings — AIOsetHWADCchanDiff 215
6.4.18.8 Query ADC Hardware Gain Settings — AIOgetHWADCchanGain 216
6.4.18.9 Configure ADC Hardware Gain Settings — AIOsetHWADCchanGain.................................. 216
6.4.18.10 Query DAC Software Bipolar/Unipolar Settings — AIOgetDACchanMode 217
6.4.18.11 Query DAC Hardware Bipolar/Unipolar Settings — AIOgetHWDACchanMode.................... 218
6.4.18.12 Configure DAC Software Bipolar/Unipolar Settings — AIOsetDACchanMode...................... 218
6.4.18.13 Configure DAC Hardware Bipolar/Unipolar Settings — AIOsetHWDACchanMode 219
6.4.18.14 Configure DAC All Channels Bipolar or Unipolar — AIOsetAllDACchanMode...................... 220
6.4.18.15 Query DAC Hardware Output Range Settings — AIOgetHWDACchanRange 220
6.4.18.16 Configure DAC Hardware Output Range Settings — AIOsetHWDACchanRange................ 221
6.4.19 Analogue Input .. 222
6.4.19.1 Set ADC Conversion Trigger Source — AIOsetADCconvSource ... 222
6.4.19.2 Set ADC Current Channel in Multiplexer — AIOsetADCmultiplexer...................................... 222
6.4.19.3 Software-trigger ADC Conversion — AIOstartADCconversion ... 223
6.4.19.4 Read ADC Data — AIOgetADCdata.. 223
6.4.19.5 Set ADC Start Acquisition Trigger — AIOsetADCstartAcquisitionTrigger 224
6.4.19.6 Get ADC Pre-trigger Count — AIOgetADCpretriggerCount .. 226
6.4.20 Analogue Output ... 227
6.4.20.1 Write DAC Data — AIOsetDACchanData.. 227
6.4.20.2 Set DAC Conversion Trigger Source — AIOsetDACconvSource ... 227
6.4.20.3 Set DAC Waveform Data — AIOsetDACchanWaveform .. 228
6.4.20.4 Software-trigger DAC Conversion — AIOstartDACconversion ... 230
6.4.21 Support for HP VEE .. 230
6.4.21.1 Timer Counter Functions In HP VEE. .. 230
6.4.22 Legacy Analogue I/O Functions .. 231
6.4.22.1 Set PC27 Multiplexer Register — PC27SetMultiplexer ... 231
6.4.22.2 Start PC27 ADC Conversion — PC27StartConversion... 231
6.4.22.3 Read PC27 ADC Data — PC27getData.. 231
6.4.22.4 Write PC27 DAC Data — PC24setData .. 232
6.4.23 Driver Interface Functions ... 232
6.4.23.1 Send IOCTL Instruction — DIO_TC_IOCTL.. 232
6.5 Library Error Codes... 233
7 IOCTL INTERFACE ... 234
7.1 About this Chapter .. 234
7.2 About the Driver .. 234
7.2.1 Driver Architecture... 234
7.3 The IOCTL Commands Supported ... 234
7.3.1 Interrupt Data Transfer Types Supported ... 238
APPENDIX A GLOSSARY OF TERMS.. 240

INDEX OF FUNCTIONS.. 244

AMPDIO DRIVERS

AMPDIO DRIVERS

Page 11

1 INTRODUCTION

1.1 Windows AMPDIO Drivers

The Windows AMPDIO Drivers are Windows software drivers that support a range of Amplicon
digital and analogue data acquisition cards. They consist of kernel level drivers, a comprehensive
application level Windows Dynamic link library (DLL) interface and example software. The software
can handle most analogue and digital signal types.

The drivers support the following functional categories:

 Digital I/O
 Counter Timer Functions
 Analogue Input
 Analogue output

The drivers are fully compatible with Windows NT 4.0, Windows 2000, Windows XP, Windows
Vista, Windows 7, Windows Server 2003, Windows Server 2008, Windows 95, Windows 98 and
Windows ME. Version 5.00 onwards also includes support for the x64 editions of Windows XP,
Windows Vista, Windows 7, Windows Server 2003 and Windows Server 2008.

Amplicon provide a comprehensive range of Personal Computer based data acquisition products
that provide very high performance, affordable hardware with comprehensive software support.

When a large-scale system is required, multiple boards can be added without conflict. The capacity
of the PC mounted hardware can be extended by external expansion panels to provide a
comprehensive system with low cost per channel and maintained high performance.

1.2 Products supported

The drivers were initially developed to support the Amplicon 200 series of ISA digital IO/counter
timer cards.

The drivers have since been expanded to support a number of ISA and PCI analogue data
acquisition cards and PCI digital IO/counter timer cards.

The Amplicon 200 series cards functionality defines the underlying software architecture of the
drivers. It is therefore important to have an understanding of the architecture of this family of cards
in order to fully utilize the driver. Information on these cards can be found in the appropriate
manuals on the Softman CD, e.g. PC215E manual.

There have been four major releases of the driver, Version 1.x, Version 2.x, Version 4.x and
Version 5.x. Version 3.0 was never commercially released.

Version 1.x Supported Series 200 Digital IO / Counter Timer cards.
Version 2.x Added support for additional Digital IO / Relay cards as well as rudimentary

support for basic analogue cards.
Version 3.x Added support for transferring large buffers of information to and from the

cards under interrupt control. (Never commercially released)
Version 4.x Added support for multifunction Analogue input / output cards and defines

a new analogue interface standard.
Version 5.x Added support for Windows Vista and x64 editions of Windows.

AMPDIO DRIVERS

Page 12

1.2.1 PC200 Series

The 200 Series cards are a range of ISA Bus PC Digital IO / Counter Timer expansion cards. The
200 Series digital input/output products may be configured in a variety of ways to provide flexible,
expansible systems.

Several digital input/output boards with timer/counter facilities are offered. These boards are
complemented by four external panels for signal conditioning and user connection through
individual terminals. Support and demonstration software for all variants is offered.

A full, itemized list of hardware products is shown below. To complete the family, a common
software package supports all digital I/O boards and the expansion panels.

Product
Number

Product Type Brief Description

PC212E1 ISA Counter/timer, Digital I/O
board

12 counters, clock/gate source, 24-
line digital I/O

PC214E1 ISA Counter/timer, Digital I/O
board

3 counters, 48-line digital I/O

PC215E1 ISA Counter/timer, Digital I/O
board

6 counters, clock/gate source, 48-line
digital I/O

PC218E1 ISA Counter/timer board 18 counters, clock/gate source
PC272E1 ISA Digital I/O board 72-line digital I/O
PC36AT2 ISA Digital I/O Board 24-Line Digital I/O Board
PC2632 ISA 16-Line Relay Board
PCI2157 PCI Counter/timer, Digital I/O

board
6 counters, clock/gate source, 48-line
digital I/O

PCI2367 PCI Digital I/O Board 24-Line Digital I/O Board
PCI2638 PCI 16-Line Relay Board
PCI2727 PCI Digital I/O board 72-line digital I/O

EX233 Termination/distribution panel 78 Terminals, 3 x 37 way distribution

connectors
EX213 Output panel 24 relay or high level logic source

drivers
EX230 Input panel 24 isolated or non-isolated, high or

low level inputs
EX221 Input/output panel 16 inputs, 8 outputs

9096 6349 78 way Screened Cable 1m I/O board to EX233

Termination/distribution panel
9095 6109 37 way Screened Cable 1m PC36AT, PCI236 or EX233 to I/O

panel
9194 5753 37 way Screened Connector Kit
9089 1950 37 way screw terminal assy
9194 5953 78 way Screened Connector Kit

1.2.2 Analogue Input / Output Cards

The driver supports a range of analogue input and output boards, all of which have 82C53 or
82C54 compatible counter timers. External panels for signal conditioning and user connection
through individual terminals are available. Support and demonstration software for all variants is
offered.

AMPDIO DRIVERS

Page 13

1.2.2.1 Analogue Output Cards

Product
Number

Product Type Brief Description

PC24E3 ISA DAC Counter Timer card 3 counters, 4 Channel +/- 10V 12 bit
DACs

PC25E3 ISA DAC Counter Timer card 3 counters, 4 Channel 4-20 mA 12 bit
DACs

PCI2246 PCI DAC Counter Timer card 3 counters, 16 multiplexed 12-bit
DACs with FIFO

PCI2346 PCI DAC Counter Timer card 3 counters, 4 multiplexed 16-bit DACs
with FIFO

1.2.2.2 Analogue Input Cards

Product
Number

Product Type Brief Description

PC26AT4 ISA ADC Counter Timer card 3 counters, 16 multiplexed ADC
channels

PC27E3 ISA ADC Counter Timer card 3 counters, 16 multiplexed ADC
channels

PCI2605 PCI ADC Counter timer card 3 counters, clock/gate source, 16
multiplexed ADC channels with FIFO

PCI260+9 PCI ADC Counter timer card 3 counters, clock/gate source, 16
multiplexed ADC channels with FIFO

The PCI260+ is an enhanced version of the PCI260, with 16-bit ADC, start acquisition control and
extra timer/counter gate controls. It is backwards compatible with the old card except that the
maximum ADC sample rate has been reduced from 312500 to 250000 samples per second.

1.2.2.3 Multi-function Analogue Cards

Product
Number

Product Type Brief Description

PC30AT4 ISA AIO Counter Timer card 3 counters, 24-line digital I/O, 16
multiplexed ADC channels, 2 DACs

PC2305 PCI AIO Counter Timer card 3 counters, clock/gate source, 24-line
digital I/O, 16 multiplexed ADC
channels with FIFO, 2 DACs

PC230+9, 10 PCI AIO Counter Timer card 3 counters, clock/gate source, 24-line
digital I/O, 16 multiplexed ADC
channels with FIFO, 2 DACs

1 Supported since Version 1.00 of the driver.
2 Supported since Version 2.01 of the driver.
3 Supported since Version 2.01 of the driver, interface changes in Version 4.00
4 Supported in Version 4.00 of the driver
5 Supported in Version 4.10 of the driver
6 Supported in Version 4.20 of the driver
7 Supported in Version 4.30 of the driver
8 Supported in Version 4.31 of the driver
9 Supported in Version 4.42 of the driver
10 PCI230+ hardware version 2 has a DAC FIFO supported in Version 4.44 of the driver

AMPDIO DRIVERS

Page 14

The PCI230+ is an enhanced version of the PCI230, with 16-bit ADC, start acquisition control and
extra timer/counter gate controls. It is backwards compatible with the old card except that the
maximum ADC sample rate has been reduced from 312500 to 250000 samples per second.

1.3 Features of the Software

1.3.1 Overview

The software consists of low-level Windows kernel drivers, a Windows Dynamic Link Library (DLL)
and a suite of example software.

The Windows Dynamic Link Library (DIO_TC.DLL) contains over 50 functions and provides a
common Applications Program Interface (API) to the supported boards. The library functions allow
the boards to be easily applied to many different applications, and provide an easy way of
accessing the board's features. The DLL can be used by any language that supports the Windows
‘_stdcall’ calling convention. The programming interface for this DLL is detailed in chapter 5, with
any later updates detailed in the README.TXT file installed in the DIO_CODE subdirectory.
AMPDIO v5.00 and later includes versions of DIO_TC.DLL compiled for IA-32 and x64 processor
architectures. On ‘x64’ editions of Windows, both versions of the DLL are installed to support 32-
bit programs and 64-bit (x64) programs. Earlier versions of AMPDIO only support the IA-32
processor architecture.

The low level kernel drivers provide a common low level interface to supported cards in Windows
95, Windows 98, Windows ME, Windows NT 4.0, Windows 2000, Windows XP, Windows Server
2003 and Windows Vista. AMPDIO v5.00 and later includes drivers for the ‘x64’ editions of
Windows XP, Windows Vista, Windows 7, Windows Server 2003 and Windows Server 2008 (in
addition to drivers for the regular IA-32 editions of Windows). A complete description of this
interface is given in the additional document AMPIOCTL.RTF that is installed in the DIO_CODE
directory.

Example programs written in Microsoft Visual Basic, Microsoft Visual Basic .NET, Microsoft Visual
C# .NET, Borland Delphi, Agilent VEE (formerly HP VEE) and Microsoft C are also provided.
Information on how to use the interface in Borland C Builder is given on MEV's web site,
www.mev.co.uk.

Add-on drivers for National Instruments LabVIEW are available for some of the supported boards.
See the Amplicon download area www.amplicon.co.uk/softman.cfm for a list of supported boards.

1.3.2 Typical Applications

The cards supported by these drivers are typically used in the following applications.

 TTL compatible digital input/output
 Relay output with isolated contacts, high level ground referenced source drivers (any

combination)
 Isolated high or low level digital input, ground referenced high or low level digital input (any

combination)
 Elapsed time, period, frequency measurement
 Differential, ratiometric count
 Monostable and astable generation
 Frequency division, frequency multiplication, digitally controlled oscillator
 Voltage controlled oscillator
 Temperature measurement
 4–20 mA / analogue sensor simulation
 Low frequency Signal Generator
 Low frequency PC oscilloscope

http://www.mev.co.uk/
http://www.amplicon.co.uk/softman.cfm

AMPDIO DRIVERS

Page 15

1.4 Windows Installation Program

The software is installed onto the user's hard disk by a Windows installation program. See section
2 of this manual for information on getting started.

1.5 Technical Support

Should this product appear defective, please check the information in this manual and any 'Help'
or 'READ.ME' files appropriate to the program in use to ensure that the product is being correctly
applied.

If a problem persists, please request Technical Support on one of the following numbers:

Telephone: UK 0844 324 0617
 Calls cost 5p per min from a BT landline. Calls from other services may vary.

Fax: UK 01273 570 215

E-mail support@amplicon.com
Internet www.amplicon.com

mailto:support@amplicon.com
http://www.amplicon.com/

AMPDIO DRIVERS

Page 16

2 GETTING STARTED

2.1 General Information

The installed software package contains a number of ready-to-run Windows 32-bit executable
programs. These programs allow the user to perform I/O operations on the target card
immediately after installing the board and software onto a PC.

2.2 Installing the Software

2.2.1 Software Installation from CD-ROM

To install the AMPDIO driver software from CD-ROM you will first need to decompress it on to
your hard disk.

From the start/run menu, browse the Amplicon “SOFTMAN” CD. From the software directory run
AMPDIO.EXE (or ADIO32.EXE on some versions) and follow the on screen instructions.

For AMPDIO 4.46 and earlier, once the software has been decompressed onto your hard drive, if
the setup program does not run automatically, run the installation program
C:\AMPLICON\AMPDIO\SETUP.EXE (C:\AMPLICON\ADIO32\SETUP.EXE on some versions).
This is not necessary for AMPDIO 5.00 and later.

The source code and examples will have been decompressed into sub directories in the target
directory. For AMPDIO 5.00 and later, installation of the source code and examples is optional.

2.3 Installing ADIO cards in the system

Once the AMPDIO software has been installed, it is necessary to install the drivers for your card
onto the operating system. The way this is done varies between the various Windows operating
systems.

Note: PCI ADIO cards are ‘plug and play’ and the operating system will try to install the drivers
automatically. It may need some manual assistance to find the driver files.

For AMPDIO 5.00 and later, the AMPDIO.EXE program can pre-install the driver files as a
Windows driver package for Windows 2000 onwards. Installing the Windows driver package for
Windows 2000 onwards updates the drivers for any Amplicon ADIO cards already installed in the
system. It also lets the system know about Amplicon ADIO cards before the first card is installed.
For Windows 2000 onwards, the Windows driver package will be installed when the ‘AMPDIO
Device Driver’ component is selected when running the AMPDIO.EXE installation program. On
later versions of Windows it is also necessary to press the ‘Install’ button on the ‘Windows
Security’ dialog that pops up during installation.

2.3.1 Installing a card in Windows 7

Installing a card in Windows 7 requires AMPDIO version 5.00 or later, but version 5.04 or later is
recommended as it installs a hardware installation guide specific to Windows 7.

It is recommended to install the driver as a Windows driver package as described in section 2.3.

AMPDIO DRIVERS

Page 17

2.3.1.1 PCI Card

For a PCI card, Windows will detect the new hardware automatically and attempt to install the
drivers without user interraction. Unless the AMPDIO drivers have been previously installed (or
pre-installed as a Windows driver package), this is likely to install the device as a non-working
device of type ‘PCI Data Acquisition and Signal Processing Controller’ in the ‘Other devices’
section of Windows Device Manager.

The recommended way to install the driver is as a Windows driver package as described in section
2.3. An alternative method is to update the initially installed, non-working device in Windows Device
Manager, using the unpacked driver files. These can be found on the SOFTMAN CD-ROM and
may also be found in the directory on the hard disk where the AMPDIO software was installed (e.g.
C:\AMPLICON\AMPDIO) if the ‘AMPDIO Device Driver’ component was selected in the AMPDIO
Setup Wizard.

To update the driver for the initially installed, non-working PCI card, do the following:

1. Go to the Control Panel by clicking START > Control

Panel. Find and open the Windows Device Manager, for
example by selecting ‘View by: Category’, clicking on
‘Hardware and Sound’, then on ‘Device Manager’.

2. In Device Manager, find the initially installed, non-

working PCI card in the ‘Other devices’ category. It will
probably be listed as a ‘PCI Data Acquisition and Signal
Processing Controller’, but might be listed as an
unknown device.

3. Assuming the device is an Amplicon PCI ADIO card,

right-click on the device and select the ‘Update Driver
Software...’ option.

4. On the page that says ‘How do you want to search for

driver software?’, click the option ‘Browse my computer
for driver software’.

5. On the page that says ‘Browse for

driver software on your computer’, click
the ‘Browse...’ button and browse to
the location of the AMPDIO driver files
on the hard disk or SOFTMAN CD
(look for the file AMPDIO.INF). Then
click the ‘Next’ button.

6. On the ‘Windows Security’ dialog with

the question ‘Would you like to install
this device software?’ click the ‘Install’
button.

7. Windows should install the device driver software and show the message ‘The software for this

device has been successfully installed’. Click the ‘Close’ button.

2.3.1.2 ISA Card

It is recommended to install the Windows driver package first, as described in section 2.3.

To install an ISA card in Windows 7, do the following:

AMPDIO DRIVERS

Page 18

1. Run the ‘Add Hardware Wizard’ by clicking the
START button, typing ‘hdwwiz.exe’ into the
search box and pressing the ‘Enter’ key.

2. On the ‘Welcome to the Add Hardware Wizard’

page, click ‘Next’ to continue.

3. On the ‘Add Hardware page’, to the question

‘What do you want the wizard to do?’, select
the option ‘Install the hardware that I manually
select from a list (Advanced)’, then click ‘Next’.

4. Windows shows a list of hardware categories.

Select the category ‘Amplicon Analogue/Digital
IO Counter Timer Cards’ if it exists, otherwise
select the ‘Show All Devices’ category at the
top of the list, then click ‘Next’.

5. Click ‘Have Disk...’, then on the pop-up dialog

click ‘Browse...’ to browse to the location on the
hard disk where the AMPDIO software is
installed (e.g. C:\AMPLICON\AMPDIO)
(alternatively, browse to the root directory of the
SOFTMAN CD-ROM), then click ‘OK’.

6. Select the card type you have installed from the

list, then click ‘Next’.

7. On the ‘Windows Security’ dialog with the

question ‘Would you like to install this device
software?’ click the ‘Install’ button.

8. Windows should install the driver and reach the

‘Completing the Add Hardware Wizard’ page.
On this page, click the link labelled ‘View or
change resources for this hardware
(Advanced)’ to open the ‘Add Hardware
Properties’ page.

9. On the ‘Add Hardware Properties’ page, click

the button labelled ‘Set Configuration Manually’.

10. On the ‘Add Hardware Properties’ page, untick

the ‘Use automatic settings’ option.

11. If the settings match the base address and IRQ

set on the card’s DIP switches and jumpers,
then click ‘OK’, then ‘Finish’, then reboot the
computer. If the settings do not match then
carry on with the following:

12. In the ‘Settings based on’ drop-down list, select ‘Basic Configuration 0001’ (or select ‘Basic

Configuration 0002’ if the card’s IRQ jumper has been removed).

13. In the ‘Resource settings’ list, select the resource you wish to change (I/O range or IRQ), click

the ‘Change Setting...’ button, type in the correct value (the up and down buttons will not work
properly) and click ‘OK’. When entering the I/O range as a single number (e.g. 300), Windows
will pop up a dialog box offering to correct the setting to a range (e.g. 0300-031F). Click ‘Yes’
to correct the I/O range if necessary. For the IRQ setting, type in the IRQ as a single number,

AMPDIO DRIVERS

Page 19

(e.g. 5 or 10). The IRQ will have to be reserved for use
by legacy devices in the PC BIOS settings. Note that
the entered resource settings will conflict with the PCI
bus initially. Windows will pop-up a ‘Conflict Warning’
dialog box. On this dialog, click ‘Yes’ to keep the new
resource setting. Repeat for the other resources you
wish to change.

14. When you are happy with the new resource settings,

click ‘OK’, then ‘Finish’.

15. Once the device has been installed (with resource

conflicts), reboot the computer.

16. Once the computer has rebooted, go to the Control

Panel by clicking START > Control Panel. Find and open the Windows Device Manager, for
example by selecting ‘View by: Category’, clicking on ‘Hardware and Sound’, then on ‘Device
Manager’. Make sure the new device is correctly installed. It should appear under ‘Amplicon
Analogue/Digital Counter Timer Cards’ without an exclamation mark, indicating that the card is
working.

2.3.2 Installing a card in Windows Vista

Installing a card in Windows Vista requires AMPDIO version 5.00 or later.

2.3.2.1 PCI Card

For a PCI card, Windows will detect the new hardware automatically and attempt to install the
drivers. The driver files can be installed from the AMPDIO software installation directory or from
the SOFTMAN CD-ROM.

To install the PCI card automatically on system start-up, do the following:

1. When Windows detects the new hardware, it opens the ‘Found New Hardware’ page. Click the

‘Locate and install driver software (recommended)’ option.

2. If the ‘User Account Control’dialog pops up, click ‘Continue’.

3. To the question ‘Allow Windows to

search online for driver software for
your ... ?’, click the ‘Don't search
online’ option.

4. The Found New Hardware page shows

a picture of a CD-ROM drive and
instructs you to insert the disc that
came with your hardware. If installing
the driver from the CD-ROM, insert the
SOFTMAN CD-ROM; Windows should
install the driver automatically. If
installing from the AMPDIO software
installation directory on the hard disk,
click the ‘I don't have the disc. Show
me other options’ option.

AMPDIO DRIVERS

Page 20

5. On the page that says ‘Windows
couldn't find driver software for your
device’, click the ‘Browse my computer
for driver software (advanced)’ option.

6. On the page that says ‘Browse for
driver software in this location’, click
the ‘Browse...’ button and browse to
the AMPDIO software installation
directory on the hard disk. Then click
the ‘Next’ button.

7. On the ‘Windows Security’ dialog, to
the question ‘Would you like to install
this device software?’ click the ‘Install’
button.

8. Windows should install the device driver software and show the message ‘The software for this
device has been successfully installed’. Click the ‘Close’ button.

2.3.2.2 ISA Card

To install an ISA ADIO card in Windows Vista, do
the following:

1. Go to the Control Panel by clicking START >

Control Panel.

2. Switch the control panel to ‘Classic View’ then

double click the ‘Add Hardware’ icon.

3. If the ‘User Account Control’ dialog pops up,

click ‘Continue’.

4. On the ‘Welcome to the Add Hardware Wizard’
page, click ‘Next’ to continue.

5. On the ‘Add Hardware’ page, to the question
‘What do you want the wizard to do?’ select
the ‘Install the hardware that I manually select
from a list (Advanced)’ option, then click ‘Next’.

6. Windows shows a list of hardware categories.
Select the ‘Amplicon Analogue/Digital IO
Counter Timer Cards’ category if it exists,
otherwise select the ‘Show All Devices’
category at the top of the list. Then click ‘Next’.

7. Click ‘Have Disk...’ then on the pop-up dialog
click ‘Browse...’ to browse to the AMPDIO
software installation location on the hard disk,
or the root directory of the SOFTMAN CD-
ROM), then click ‘OK’.

8. Select the card type you have installed from the
list, then click ‘Next’.

9. On the page labelled ‘The wizard is ready to

AMPDIO DRIVERS

Page 21

install your hardware’ click ‘Next’.

10. On the ‘Windows Security’ dialog, to the question ‘Would you like to install this device
software?’ click the ‘Install’ button.

11. Windows should install the driver and reach the
‘Completing the Add Hardware Wizard’ page.
On this page, click the link labelled ‘View or
change resources for this hardware
(Advanced)’ to open the ‘Add Hardware
Properties’ page.

12. On the ‘Add Hardware Properties’ page, click
the button labelled ‘Set Configuration
Manually’.

13. On the ‘Add Hardware Properties’ page, untick
the ‘Use automatic settings’ option.

14. If the displayed resources match the base address and IRQ set on the card’s DIP switches
and jumpers, then click ‘OK’, then ‘Finish’, then tell Windows to reboot the computer via the
usual means (e.g. via the START menu). If the displayed resources do not match the card
then carry on with the following:

15. In the ‘Settings based on’ drop-down list, select ‘Basic Configuration 0001’ (or select ‘Basic
Configuration 0002’ if the card's IRQ jumper has been removed).

16. In the ‘Resource settings’ list, select the resource you
wish to change (I/O range or IRQ), click the ‘Change
Setting...’ button, type in the correct value (the up and
down buttons will not work properly) and click ‘OK’.
When entering the I/O range as a single number (e.g.
300), Windows will pop up a dialog box offering to
correct the setting to a range (e.g. 0300-031F). Click
‘Yes’ to correct the I/O range if necessary. For the IRQ
setting, type in the IRQ as a single number, (e.g. 5 or
10). The IRQ will have to be reserved for use by legacy
devices in the PC BIOS settings. Note that the entered
resource settings will conflict with the PCI bus initially.
Windows will pop-up a ‘Conflict Warning’ dialog. On
this dialog, click ‘Yes’ to keep the new resource setting.
Repeat for the other resources you wish to change.

17. When you are happy with the new resource settings, click ‘OK’, then ‘Finish’.

18. Once the device has been installed (with resource conflicts), reboot the computer via the usual
means (e.g. via the START menu).

19. Once the computer has rebooted, go to the Control Panel and double click on the ‘Device
Manager’ icon to make sure the new device is correctly installed. It should appear under
‘Amplicon Analogue/Digital Counter Timer Cards’ without an exclamation mark indicating that
the card is working.

2.3.3 Installing a card in Windows XP

For versions of the AMPDIO software prior to 4.32, please follow the instructions for installing a
card in Windows NT 4.0 (see section 2.3.5). For versions 4.30 and 4.31, the supplied
AMPDIOV4.INF file will allow the supported PCI cards to appear under Device Manager, but these

AMPDIO DRIVERS

Page 22

are just dummy entries. For versions prior to 4.30 the supported PCI cards will appear as unknown
devices under Device Manager.

For AMPDIO software versions 4.32 and later a ‘Plug and Play’ Windows 2000 / Windows XP
driver is used. This section describes how to install a card to use this Plug and Play driver under
Windows XP.

2.3.3.1 PCI Card

For a PCI card, Windows will detect the new hardware automatically and attempt to install the
drivers. The driver files can be installed from the AMPDIO software installation directory or from
the SOFTMAN CD-ROM.

To install the PCI card automatically on system start-up, do the following:

1. If installing from CD-ROM rather than from the AMPDIO software installation directory, ensure

the Amplicon SOFTMAN CD-ROM is in the CD-ROM drive.

2. When Windows detects the new hardware it

opens the ‘Welcome to the Found New
Hardware Wizard’ page. To the question ‘Can
Windows connect to Windows Update to search
for software?’ select the option ‘No, not this
time’. Press ‘Next’.

3. If installing from the CD-ROM, select the ‘Install

the software automatically (Recommended)’
option. If installing from the AMPDIO software
installation directory on the hard disk, select the
‘Install from a list or specific location (Advanced)’
option. Press ‘Next’.

4. If installing from the AMPDIO software installation directory, select the ‘Search for the best
driver in these locations’ option, deselect the ‘Search removable media (Floppy, CD-ROM...)’
option, select the ‘Include this location in the search’ option, press the ‘Browse’ button and
browse to the AMPDIO software directory. Then press ‘Next’.

5. If a ‘Security Alert’ dialog appears, press ‘Yes’ to allow Windows to install the driver.

6. Windows will install the driver and reach the ‘Completing the Found New Hardware Wizard’
page.

7. On the ‘Completing the Found New Hardware Wizard’ page, press ‘Finish’.

2.3.3.2 ISA Card

To install an ISA ADIO card in Windows XP (with the Plug and Play driver) do the following:

1. Go to the Control Panel by pressing START > Control Panel.

2. If the Control Panel is showing the Category View, switch to the Classic View. In the Classic

View, double click on the ‘Add Hardware’ icon.

3. On the ‘Add Hardware Wizard’ page, press ‘Next’.

AMPDIO DRIVERS

Page 23

4. Windows will search for Plug and Play hardware.
Assuming it finds none, Windows will ask ‘Is the
hardware connected?’. Select the option ‘Yes, I
have already connected the hardware’ and press
‘Next’.

5. Windows will show a list of hardware already
installed on your computer. Scroll to the end of
the list and select the bottom entry, ‘Add a new
hardware device’. Press ‘Next’.

6. Windows will ask ‘What do you want the wizard
to do?’ Select the second option ‘Install the
hardware that I manually select from a list
(Advanced)’ and press ‘Next’.

7. Windows shows a list of hardware categories.
Select the ‘Amplicon Analogue Digital IO
Counter Timer Cards’ category if it exists,
otherwise select the ‘Other devices’ category.
Then press ‘Next’.

8. Press ‘Have Disk...’. On the pop-up dialog, press
‘Browse…’ and browse to the AMPDIO software
installation directory on the hard disk, or the root
directory on the SOFTMAN CD-ROM. Then
press ‘OK’.

9. Select the card type you have installed from the
list, then press ‘Next’.

10. On the page labelled ‘The Wizard is ready to
install your hardware’, press ‘Next’.

11. Windows will install the driver and reach the
‘Completing the Add Hardware Wizard’ page. On
this page, press the link labelled ‘View or change
resources for this hardware (Advanced)’ to open
the ‘Add Hardware Wizard Properties’ page.

12. On the ‘Add Hardware Wizard Properties’ page, press the button labelled ‘Set Configuration
Manually’.

13. If the settings match the base address and IRQ set on
the card’s DIP switches and jumpers, then press ‘OK’,
then ‘Finish’, then on the pop-up dialog press ‘Yes’ to
allow Windows to reboot. If the settings do not match
then carry on with the following:

14. In the ‘Settings based on’ drop-down list, select ‘Basic
Configuration 0001’ (or select ‘Basic Configuration 0002’
if the card’s IRQ jumper has been removed).

15. In the ‘Resource settings’ list, select the resource you
wish to change, press the ‘Change Setting’ button,
correct the value using the up and down buttons and
press ‘OK’. Repeat for the other resources you wish to
change.

AMPDIO DRIVERS

Page 24

16. When you are happy with the new resource settings, press ‘OK’, then ‘Finish’, then on the pop-
up dialog press ‘Yes’ to allow Windows to reboot.

2.3.4 Installing a card in Windows 2000

For versions of the AMPDIO software prior to 4.32, please follow the instructions for installing a
card in Windows NT 4.0 (see section 2.3.5). For versions 4.30 and 4.31, the supplied
AMPDIOV4.INF file will allow the supported PCI cards to appear under Device Manager, but these
are just dummy entries. For versions prior to 4.30 the supported PCI cards will appear as unknown
devices under Device Manager.

For AMPDIO software versions 4.32 and later a ‘Plug and Play’ Windows 2000 driver is used. This
section describes how to install a card to use this Plug and Play driver under Windows 2000.

2.3.4.1 PCI Card

For a PCI card, Windows will detect the new hardware automatically and attempt to install the
drivers. The driver files can be installed from the AMPDIO software installation directory or from
the SOFTMAN CD-ROM.

To install the PCI card automatically on system start-up, do the following:

1. If installing from CD-ROM rather than from the AMPDIO software installation directory, ensure

the Amplicon SOFTMAN CD-ROM is in the CD-ROM drive.

2. If Windows opens the ‘Welcome to the Found

New Hardware Wizard’ page, press ‘Next’ and
go to step 3. If Windows just asks for a disk
labelled ‘Amplicon DIO Drivers Disk’ go to step
7.

3. Select the ‘Search for a suitable driver for my

device (recommended)’ option and press ‘Next.

4. If installing from the CD-ROM, check the ‘CD-
ROM drives’ option. If installing from AMPDIO
software installation directory, check the ‘Specify
a location’ option. Press ‘Next’.

5. If installing from the AMPDIO software installation directory, browse to the directory, press
‘Open’, then ‘OK’.

6. On the ‘Driver Files Search Results’ page, Windows should say ‘Windows found a driver for
this device’. Press ‘Next’.

7. If Windows asks for a disk labelled ‘Amplicon DIO Drivers Disk’ when trying to copy files, click
“OK” to cancel the alert box, then browse to the root directory on the CD-ROM (or the AMPDIO
software installation directory on the hard disk) and press ‘Open’, then ‘OK’. Windows will copy
the files and install the driver.

8. On the ‘Completing the Found New Hardware’ screen, press ‘Finish’

2.3.4.2 ISA Card

To install an ISA ADIO card in Windows 2000 (with the Plug and Play driver) do the following:

AMPDIO DRIVERS

Page 25

1. Go to the Control Panel by pressing START > Settings > Control Panel.

2. Double click on the ‘Add/Remove Hardware’

icon. Press ‘Next’.

3. Select ‘Add/Troubleshoot a device’. Press ‘Next’.

4. Windows will search for Plug and Play hardware.

Assuming it finds none, it will present a list of
installed devices. Select ‘Add a new device’.
Press ‘Next’.

5. To the question ‘Do you want Windows to search
for your new hardware?’ select ‘No’ then press
‘Next’.

6. Select the ‘Amplicon Analogue Digital IO Counter
Timer Cards’ hardware type if it exists, otherwise
select the ‘Other devices’ type. Then press
‘Next’.

7. Press ‘Have Disk’, browse to the AMPDIO
software installation directory or the root
directory of the CD-ROM, select the
AMPDIO.INF file (or AMPDIOV4.INF for versions
prior to v5.00), press ‘Open’, then press ‘OK’.

8. Select the card type you have just installed from
the list, then press ‘Next’.

9. On the pop-up dialog which says ‘Windows could
not detect the settings of this device’, press ‘OK’.

10. On the page listing the resources (Input/Output
Range and Interrupt Request), press ‘OK’.

11. On the ‘Start Hardware Installation’ page, press
‘Next’.

12. On the ‘Completing the Add/Remove Hardware
Wizard’ page, press the ‘Resources’ button.

13. If the settings match the base address and IRQ set on the card’s DIP switches and jumpers,
then press ‘OK’, then ‘Finish’, then on the pop-up dialog press ‘Yes’ to allow Windows to
reboot. If the settings do not match then carry on with the following:-

14. In the ‘Settings based on’ drop-down list, select ‘Basic
Configuration 0001’ (or select ‘Basic Configuration 0002’
if the card’s IRQ jumper has been removed).

15. In the ‘Resource settings’ list, select the resource you
wish to change, press the ‘Change Setting’ button,
correct the value using the up and down buttons and
press ‘OK’. Repeat for the other resources you wish to
change.

16. When you are happy with the new resource settings,
press ‘OK’, then ‘Finish’, then on the pop-up dialog press
‘Yes’ to allow Windows to reboot.

AMPDIO DRIVERS

Page 26

2.3.5 Installing a card in Windows NT 4.0

2.3.5.1 PCI Card

Note: the driver will automatically detect and install PCI ADIO cards to a spare DIO port name in
the range DIO0 to DIO255. The ‘Amplicon DIO’ control panel applet may be used to display the
settings for these cards and may be used to configure a card not to use interrupts.

The DIO port names of PCI cards that have been removed are remembered. The DIO port name
will be restored if the PCI card is reinstalled. If a new PCI ADIO card is installed and the driver
cannot find a spare DIO port name to assign it to, the card will not be available for use. In this
case, the control panel applet may be used to delete one of the DIO port entries (e.g. for a PCI
card which is no longer installed). When the AMPDIO driver is next restarted (e.g. by rebooting the
system) the driver will assign the new PCI card to the spare DIO port name.

2.3.5.2 ISA Card

To install an ISA ADIO card in Windows NT 4.0 you will need to
use the control panel applet supplied.

1. Select Add.

2. Configure the required card type, base address and IRQ

settings.

3. Select OK and allow the system to reboot.

2.3.6 Installing a card In Windows 95/98/ME

2.3.6.1 PCI Card

For a PCI ADIO card, Windows 95, 98 or ME will detect the new card on boot up and attempt to
install the drivers. The drivers can be installed from the root directory of the SOFTMAN CD or from
the directory on the hard disk where the AMPDIO software was installed to (e.g.
C:\AMPLICON\AMPDIO).

To install the PCI card automatically on system start-up, do the following:

1. If installing from CD-ROM rather than from the AMPDIO software installation directory, ensure

the Amplicon SOFTMAN CD-ROM is in the CD-ROM drive.

2. If Windows fails to find a suitable INF file automatically, click on the ‘Other Locations’ button,

browse to the root directory of the CD (or the AMPDIO software installation directory on the
hard disk) and click ‘OK’.

3. Windows should correctly identify the card. Click on ‘Finish’.

4. If Windows asks for a disk labelled ‘Amplicon DIO Drivers Disk’ when trying to copy files, click

‘OK’ to cancel the alert box, then browse to the root directory on the CD-ROM (or the AMPDIO
software installation directory on the hard disk) and click on ‘OK’.

5. Windows will copy the files and install the driver.

AMPDIO DRIVERS

Page 27

2.3.6.2 ISA Card

To install an ISA ADIO card in Windows 95, 98 or ME do the following:

1. Go to the Control Panel by pressing START >

Settings > Control Panel.

2. Double click on the ‘Add New Hardware’ icon. Then

press ‘Next’.

3. To the question ‘Do you want Windows to search for

your new hardware?’ select ‘No’ then press ‘Next’.

4. Select ‘Amplicon Analogue Digital IO Counter Timer
Cards’ if it exists, otherwise select ‘Other’. Press
‘Next’.

5. Press ‘Have Disk’ then ‘OK’ and browse to the root
directory on the SOFTMAN CD, where the file
AMPDIO.INF should be located (AMPDIOV4.INF for
versions prior to v5.00). Alternatively, browse to the
directory on your hard disk where the AmpDIO
software was installed to (e.g.
C:\AMPLICON\AMPDIO).

6. Select from the list the card type you have just
installed then press ‘Next’.

7. Make a note of the settings Windows has defaulted the card to (I/O Range and Interrupt) then
press ‘Next’, then ‘Finish’.

8. If the Windows default settings match the card’s
jumper settings then allow Windows to reboot
(installation is now complete) else carry on with the
following :

9. If the Windows default settings do not match the
card’s jumper settings, do not reboot yet. Go to
START > Settings > Control Panel.

10. Double click the ‘System’ icon in the Control Panel
window and then select the ‘Device Manager’ tab on
the System Properties page.

11. Double Click on ‘Amplicon Analogue Digital IO
Counter Timer Cards’.

12. Click on your card.

13. Select Properties > Resources.

14. In 'Settings Based On' change from ‘Basic
Configuration 0’ to ‘Basic Configuration 1’.

15. Click on each item that needs to change, press
‘Change Setting’ and edit the item’s value.

16. When you are happy with the settings, Click OK and
allow Windows to REBOOT.

AMPDIO DRIVERS

Page 28

2.3.7 Installing Multiple Boards in a Single Host PC

More than one ADIO board may be installed in a single host PC. Furthermore, any combination of
boards supported by the driver may be installed in a single host PC. Subject to the number of
physical slots and resources, the maximum number of boards supported by the driver is 256.

1. To install more than one board in the host PC, the following points should be checked:
2. Sufficient space is available to mount the required number of boards.
3. Sufficient power is available for all the plug-in boards and adapters. Each PC214E requires

+5V at up to 100 mA.
4. For none plug and play boards, check the base address of each board is set by switch to a

different value, preferably at contiguous even addresses, and with no conflict with other
installed devices. Suitable base addresses for four boards could be 30016, 32016, 34016 and
36016.

5. For none plug and play boards, check that the interrupt level (IRQ) of each board is set by
jumper to a different value, and with no conflict with other installed devices.

Once the boards are installed into the PC and you must follow the steps outlined above to install
the boards into your operating system.

AMPDIO DRIVERS

Page 29

3 DRIVER FUNCTIONS AND CONCEPTS

This chapter describes the functions and concepts of the AMPDIO driver and library. Details of the
underlying register structures and software are given in chapters 4 and 5 respectively.

Reference should also be made to chapter 2.

The driver is shipped with a Windows dynamic link library (DIO_TC.DLL) written in C and example
programs written in a number of different Windows visual programming languages. The DLL
contains functions that implement typical applications for the supported devices. The source code
for the DLL and the examples programs is shipped as part of the driver. As digital and analogue I/O
boards can be used for a vast variety of tasks, the DLL and examples are provided as a
demonstration of how to interface to the driver and are not intended as a definitive set of functions.

The DLL provides an example Windows application interface to Analogue and Digital logic on
Amplicon data acquisition cards.

 It supports the industry standard 82C55 CMOS Programmable Peripheral Interface device.
 It supports the industry standard 82C54 CMOS Counter/Timer device (82C53 is supported on

ISA analogue I/O cards).
 It supports analogue data acquisition.
 It supports digital to analogue conversion.
 It supports interrupts.
 It supports transferring large buffers of information under interrupt control.
 It allows boards to be configured in a variety of operating modes.

The driver originally supported the 82C55 PPI and 82C54 counter timer devices as implemented
on the 200 series digital IO cards, i.e. boards in the PC215E, PC212E, PC218E and PC272E
range. It has since been expanded to support a range of analogue cards. The 82C55 PPI and
82C53/4 counter timer devices are supported using the same model as that developed for the 200
series card so it is important to have an understanding of this family of cards. This register
structure is outlined in chapter 4.

Note that the 200 series cards and the PCI data acquisition cards support software-programmable
counter/timer clock and gate connections for use in configuring the 82C54 Timer Counter chips.
For boards that do not, special care must be taken to configure the jumpers and external
connections before using library functions.

Also please take into consideration the limits on the input and output frequencies when using the
timer/counter functions. These limits arise because the software was written to support the whole
range of Digital I/O and Timer/Counter boards, some of which have software selectable clock
sources.

3.1 Timer Counter Functions

The library supports a number of different applications of the Timer Counter logic that do not
require the use of interrupts.

3.1.1 Differential Counter

Two timer/counters can be used to form a Differential Counter pair from which the ratio of, or the
difference between, the two count values is derived. See section 6.4.6.

The function TCsetDiffCounters allows you to specify the two timer/counters to be used as a
differential pair. The function registers the timer/counter pair as being 'in use' and unavailable for

AMPDIO DRIVERS

Page 30

any other application. Provision is also made by TCsetDiffCounters to specify the clock and gate
connections for both timer/counters.

The functions TCgetDiffCount and TCgetRatio can be called at any time after TCsetDiffCounters,
and these two functions latch and read the current count values of the timer/counters, using the
read-back command, and return the difference and ratio of the two count values respectively.
Function TCfreeDiffCounters can be called when finished with the differential counter, and releases
the timer/counter pair so they become available for use by another application.

3.1.2 Monostable Multivibrator

Mode 1 of the 82C54 timer/counter provides a digital one-shot output. This can be used to
implement a monostable multivibrator pulse. In this mode, the output of the timer goes low at the
falling edge of the first clock succeeding the gate trigger, and is kept low until the counter value
becomes 0. Once the output is set high, it remains high until the clock pulse succeeding the next
gate trigger.

Function TCsetMonoShot allows you to specify a timer/counter and a monostable pulse duration
(in seconds). See section 6.4.8.1. The function calculates the initial count value required to
generate the specified pulse length, and programs the timer/counter accordingly. Normally, the
counter/timer's internal clock source is selected automatically by the function, but in the case of the
legacy cards, the user must ensure the relevant jumper settings are selected correctly for one of
the following ranges of possible pulse duration times:

Output pulse duration range Input clock frequency
Min Max
200 ns 6.5 ms 10 MHz
0.2 s 65 ms 1 MHz
2.0 s 650 ms 100 kHz
20 s 6.5 s 10 kHz
0.2 ms 65 s 1 kHz

It is the responsibility of the user to provide the external gate signal to trigger the monostable
output.

3.1.3 Astable Multivibrator

An extension of the monostable multivibrator is to have two such timer/counters each generating
an output pulse of specified duration, but each being triggered by the end of the other
timer/counter's pulse. By adjusting the two pulse duration times, an astable multivibrator waveform
with a given frequency and mark-to-space ratio can be attained.

This application is implemented in function TCsetAstable — see section 6.4.8.2. The msratio
argument to the function specifies the mark-to-space ratio, and this is defined as follows:

mark-to-space ratio = mark time / overall period

The function registers the timer/counters as being 'in use' and unavailable for any other application.
Function TCfreeAstable can be called when finished with the astable multivibrator, and releases
the timer/counters so they become available for use by another application.

The output of each timer/counter must be connected externally via the user connector, SK1, to the
gate input of the other timer/counter.

The TCsetAstable function calculates the input clock frequencies and counter divide ratios (CDRs)
for the two timers and normally makes the selections automatically. However, for some boards the

AMPDIO DRIVERS

Page 31

clock selections must be made by hand, and therefore a discussion of the calculations involved are
necessary to obtain the correct input clock source jumper selections.

MARK SPACE

tM tS

1 / freq

tM = msratio / freq where msratio = mark to space ratio
 freq = output frequency (Hz)
 tM = mark time (seconds).

The CDR for the 'mark' timer/counter, cdrM, is defined as

cdrM = tM x fClkM where fClkM = 'mark' timer's input clock frequency.

The equation for cdrM should be iterated for various values of fClkM, starting at 10 MHz and
working down, until the result gives a value for cdrM that is less than FFFF16 (the maximum value
for a CDR). When this is attained, a suitable input clock frequency has now been found. A similar
calculation can now take place for tS, with

tS = (1 / freq) – tM

cdrS = tS x fClkS where tS = space time (seconds)
 fClkS = 'space' timer's input clock frequency
 cdrS = CDR for 'space' timer/counter.

Note: the 82C54 timer/counters outputs are switched to the low level by the next clock after the
gate trigger, possibly causing the mark-to-space ratio to become distorted by one or two clock
pulses. This will become more apparent at higher frequencies.

3.1.4 Stopwatch

In mode 2, the output of the 82C54 timer/counter starts high; goes low for one clock pulse when
the count value decrements to 1, and then is set to high again. The initial count value is then
automatically re-loaded; counting continues and the sequence repeats. The output can be used as
a clock signal for another timer/counter, and any number of timer/counters can be cascaded in this
way. See section 6.4.7.

The TCsetStopwatch function sets up two timer/counters in this way with a clock input frequency of
1 kHz. Function TCstartStopwatch sets the counters counting, and function TCgetElapsedTime
latches and reads the two count values to calculate the elapsed time, in milliseconds, since the
counters were first set off by TCstartStopwatch. This stopwatch can count milliseconds for nearly
50 days. Function TCfreeStopwatch releases the timer/counters so they can become available for
use by another application when the stopwatch is no longer required.

3.1.5 Frequency/Period Measurement

Another use for the pulse generation capabilities of the 82C54 is for one counter/timer to provide a
precise GATE signal during which a second timer/counter counts an external event. In mode 0, a
high level on the gate input validates counting, and a low level invalidates it (i.e. counting stops).

AMPDIO DRIVERS

Page 32

Also a low-to-high transition on the gate input causes the initial count value to be re-latched into the
counting element.

Two functions TCgetExtFreq and TCgetExtPeriod (see sections 6.4.9.1 and 6.4.9.2) are used to
program a timer/counter to provide a one-shot gate pulse of precise duration to a second
timer/counter. The second timer/counter has an external signal as its clock input. When the gate
pulse is over, the second timer/counter's counting stops, and its value is then read. A simple
calculation is then made to determine the number of external clock cycles received during the gate
period, and from this the external frequency and period can be estimated. An increasing sequence
of gate periods (6.5535 ms, 65.535 ms, 655.35 ms, 6.5535 s and 65.535 s) is tried until a
sufficiently accurate count (at least 1000 ticks) is read from the second timer/counter. On cards
without clock and gate connection registers, such as the PC214E, a fixed gate period of 6.5535 ms
is assumed.

Version 4.42 of DIO_TC.DLL provides another frequency measurement function
TCgetExtFreqRestricted (see section 6.4.9.3). This uses two timer/counter channels in the same
way as TCgetExtFreq, but the frequency is external frequency is measured by counting external
clock pulses over a specified period. The function also indicates whether the 16-bit counter used to
measure the frequency overflowed during the measurement period.

The timer/counter you specify in calls to TCgetExtFreq, TCgetExtPeriod and
TCgetExtFreqRestricted is the second timer/counter described above. In cards that support
programmable gate configuration, the counters will be configured automatically. For certain legacy
cards the user must set appropriate jumpers. To use Z1 counter 2 on the PC214E, the following
connections must be made:

1. Connect the external TTL signal to SK1 pin 36 with reference to GND on, say SK1 pin 56.
2. Remove jumper J4
3. Place jumper J2 in position 1 (10 MHz) for TCgetExtFreq or TCgetExtPeriod, or in position 2 (1

MHz) for TCgetExtFreqRestricted.
4. Link SK1 pin 54 (Z1 /OUT0 O/P) to SK1 pin 75 (Z1 GAT2 I/P)

3.1.6 Frequency Generation

In mode 3 the output of the timer/counter is a periodic square wave, whose frequency is the input
clock frequency divided by the programmed counter divide ratio (CDR). The function
TCgenerateFreq (see section 6.4.8.4) calculates the CDR required for a specific frequency on a
given timer/counter. Normally the function selects an appropriate input clock frequency but, since
the PC214E does not support software-programmable clock connections, the clock input must be
set as 1 MHz on the appropriate jumper. For the PC27E, the clock input is fixed at 4 MHz.

The function TCgeneratePulse (see section 6.4.8.6) is provided as a variant of TCgenerateFreq.
This uses mode 2 instead of mode 3, which results in a periodic negative-going pulse instead of a
square wave. The width of the pulse is the period of the input clock.

3.1.7 Frequency Multiplication

An extension of the frequency measurement and frequency generation capabilities described in
sections 3.1.5 and 3.1.6 above is to combine the two into a process that measures an external
frequency on one timer/counter; multiplies the frequency value by a given factor and generates this
new frequency on a second timer/counter. Function TCmultiplyFreq described in section 6.4.9.4
performs this operation. See sections 3.1.5 and 3.1.6 above for connection details.

AMPDIO DRIVERS

Page 33

3.1.8 Pulse Train Generation

By connecting the gate input of a frequency generator to the inverted output of another
timer/counter channel, it is possible to generate a fixed number of negative-going pulses within a
fixed period of time. These pulses will be narrow pulses if mode 2 is used for the frequency
generator channel (the ‘pulse’ channel), or square if mode 3 is used.

The duration of each train of pulses may be set by using the inverted output of a monostable
multivibrator (the ‘one-shot’ channel running in mode 1) as the gate input of the frequency
generator. The function TCsetOneShotPulseTrain described in section 6.4.8.20 allows a fixed
number of pulses to be output on the pulse channel during the one-shot pulse. The gate input of
the one-shot channel is used as the trigger.

By triggering the one-shot periodically from the output of a third timer/counter channel (the ‘train’
channel running in mode 2) a periodic pulse train generator is produced. The function
TCsetPeriodicPulseTrain described in section 6.4.8.7 allows the duration and number of pulses
within each pulse train to be set, and the frequency of the pulse trains to be set.

A variant of the periodic pulse train generator uses the inverted output of the train channel directly
as the gate input of the pulse channel directly with no one-shot channel between the two. The
duration of the pulse train is restricted to the period of the input clock for the train channel. The
function TCsetRestrictedPulseTrain described in section 6.4.8.14 uses this mechanism.

In all cases, only the ‘pulse’ (output) channel is specified and the other timer/counter channels are
offset from this. For boards with timer/counter clock connection registers and timer/counter gate
connection registers, everything can be set-up automatically by the functions. For the PC214E it is
necessary to wire up the gate inputs and trigger inputs manually on connector SK1 and to specify
to functions which of the predefined input clock sources to use, corresponding to the jumper
settings.

3.1.9 Pulse Width Modulation

It is possible to generate a frequency with a variable mark-to-space ratio by using the
TCsetAstable function (see section 3.1.3), but it is inconvenient to wire two one-shot monostables
back to back. An alternative is to use a single hardware-retriggerable one-shot triggered
periodically from the output of another timer/counter programmed in mode 2 to generate the
desired frequency. This connection can be made internally using the gate connection registers on
cards that have them. The TCsetPWMTrain function described in section 6.4.8.31 can be used to
set up such a frequency generator with programmable space-to-mark ratio. Related functions are
provided to change the space-to-mark ratio or the frequency after it has been set up.

The TCsetPWPulse function described in section 6.4.8.26 provides just the one-shot part of the
above without the frequency generator. This performs a similar function to the TCsetMonoShot
function, but the output low pulse duration is specified as an assumed overall period multiplied by a
space-to-mark ratio. Related functions are provided to change the space-to-mark ratio and the
overall period, but the function only has direct control over the length of the output low period.

3.1.10 Event Counter

Two timer/counter chips can be cascaded to provide a 32-bit count of clock pulses, which can
come from an external source. A clock pulse consists of a rising edge followed by a falling edge.
The TCsetEventCounter function described in section 6.4.7.8 provides this facility. The
TCgetEventCount function described in section 6.4.7.10 is used to read the current event count.
The count can be reset to zero by calling the TCresetEventCount function described in section
6.4.7.9. The function TCfreeEventCounter described in section 6.4.7.11 should be called to free up
the timer/counter resources when the event counter is no longer required.

AMPDIO DRIVERS

Page 34

The specified timer/counter channel is set to mode 2 with an initial count of 65536 and divides the
event clock. The output is fed to the input of another timer/counter channel offset by +1 from the
specified channel. This second channel is set to mode 0 with an initial count of 65536. The initial
count of the second channel is loaded by toggling the mode of the first channel. The initial count of
the first channel is loaded on the first event clock pulse. To read the event count, the status of the
two channels and their counts are read. The status indicates whether the first event clock has
occurred yet (by checking whether the initial count of the first channel has been loaded) and
indicates whether the 32-bit count has overflowed (by checking the output state of the second
channel).

The 32-bit event counter functions do not work on the PC24E, PC25E, PC26AT, PC27E or
PC30AT because the status of the timer/counter chips cannot be monitored on these cards.

3.2 Digital I/O Functions

The library supports a number of basic digital I/O functions that do not require the use of interrupts.

3.2.1 Basic Digital I/O

The library supports basic digital I/O for mode 0 of the 82C55 programmable peripheral interface
chip. The 82C55 ports A, B and C can be configured as inputs or outputs using the DIOsetMode
function (see section 6.4.11.2). Port C is split into two 4-bit halves, individually configurable as
inputs or outputs.

The library supports the concept of digital I/O channels. The channels can be 1, 2, 4, 8, 12 or 24
bits wide. The DIOsetChanWidth function (see section 6.4.11.4) is used to configure channel
widths. The channels are mapped onto the physical ports in the following way.

Channel Width Channel Mapping Port Mapping
1 X0..X7

X8..X15
X16..X24

Port A bits 0,1,2,..,7
Port B bits 0,1,2,..,7
Port C bits 0,1,2,..,7

2 X0..X3
X4..X7
X8..X11

Port A bits 0&1,2&3,..,6&7
Port B bits 0&1,2&3,..,6&7
Port C bits 0&1,2&3,..,6&7

4 X0
X1
X2
X3
X4
X5

Port A bits 0 to 3
Port A bits 4 to 7
Port B bits 0 to 3
Port B bits 4 to 7
Port C bits 0 to 3
Port C bits 4 to 7

8 X0
X1
X2

Port A bits 0 to 7
Port B bits 0 to 7
Port C bits 0 to 7

12 X0
X1

Port A and Port C bits 4..7
Port B and Port C bits 0..3

24 X0 Port A bits 0 to 7
Port B bits 0 to 7
Port C bits 0 to 7

Note that the 12-bit channel configuration does not follow the same pattern as the others. The 12-
bit channels are arranged in a way that is compatible with mode 1 and mode 2 strobed data
communication.

The DIOsetData and DIOgetData functions (see sections 6.4.11.5 and 6.4.11.6) are used to read
and write the digital channels.

AMPDIO DRIVERS

Page 35

There are also lower level functions available. These functions were first implemented in version
2.0x of the library. They allow direct programming of the 82C55 ports without using the channel
concept and allow modes 1 and 2 to be selected. The extra functions are DIOsetModeEx,
DIOgetModeEx, DIOgetDataEx and DIOsetDataEx (see sections 6.4.11.7, 6.4.11.8, 6.4.11.9 and
6.4.11.10). With these functions, the supplied value is written directly to the associated 82C55
device. The function of the 82C55 is detailed in section 5.4.1.

The 82C55 chip is normally operated in mode 0. The DIOsetModeEx function (see section
6.4.11.7) can be used to write an arbitrary value to the 82C55’s control port. This can be a mode-
setting command or a single bit set/reset command (useful in modes 1 and 2).

Setting the mode using the DIOsetMode or DIOsetModeEx functions causes all configured output
bits to be set to the logic level 0 (0V).

3.2.2 Switch Matrix

The high numbers of digital I/O channels available on the 82C55 PPI devices lend themselves to a
switch matrix scanner implementation. The status of a matrix of switches can be obtained by
sending test patterns into the matrix, and then reading status patterns back from the matrix.

Section 6.4.12 describes functions that allow PPIX, both PPIX and PPIY, or PPIX, PPIY and PPIZ
to be used as such a device. Using only PPIX, up to 144 switches can be scanned; using both
PPIX and PPIY, up to 576 switches can be scanned; using PPIX, PPIY and PPIZ, up to 1296
switches can be scanned. Group ‘A’ ports of the 82C55 device(s) (Port A and Port C-upper) are set
for output to send test patterns to the matrix. Group ‘B’ ports (Port B and Port C-lower) are set for
input to read the switch status information. The user must ensure that the switch matrix is wired as
detailed below.

GND GND

1N4448

1N4448

SPST SPST

10k 10k

SPST SPST

PPI X A0

PPI X A1

PPI X B0 PPI X B1

etc., up to PPI X A7,
then C4 to C7, then
onto PPI Y, and PPI Z.

etc., up to PPI X B7,
then C0 to C3, then
onto PPI Y, and PPI Z.

Figure 1 – Switch Matrix Configuration

AMPDIO DRIVERS

Page 36

Function DIOsetSwitchMatrix allows you to set up the matrix, specifying the matrix order. For the
PC214E, this can be 12 X 12 or 24 X 24 switches. The function also registers the PPIs used as
being 'in use' and unavailable for use by other programs. Function DIOgetSwitchStatus returns the
status of a given switch in the matrix, and function DIOfreeSwitchMatrix frees the PPIs so they can
be used by other programs when the switch matrix is no longer required.

3.3 Basic Analogue I/O Functions

The library supports a range of basic analogue I/O functions. Basic analogue I/O functions do not
require the use of interrupts.

3.3.1 Determining Analogue Resources

The library includes functions to determine what analogue resources are on the card.
AIOcountADCchans and AIOcountDACchans allow the user to determine the precise number of
analogue to digital converters (ADCs) and digital to analogue converters (DACs) available on a
card (see section 6.4.17).

3.3.2 Channel Masks

A number of cards support multiple digital to analogue or analogue to digital converters. These are
either implemented as individual devices mapped into different areas of the I/O space or as single
devices with a multiplexed input stage. The channel mask is used to allow these individual
channels to be configured independently.

The analogue configuration functions accept a Channel Mask parameter. This parameter allows
individual channels to be configured differently. In order to configure a channel the associated bit
must be set to one, e.g. for channel 0 set bit 0, for channel 2 set bit 2:

ChanMask: 5 = 00000000000001012 selects channels 0 and 2.

3.3.3 Channel Groups

If a card supported multiple sets of multiplexed analogue I/O or a mixture of multiplexed and non-
multiplexed analogue I/O of the same type, then the analogue resources would be considered to
be in different groups. No currently supported card has more than one ADC channel group or DAC
channel group. Therefore, in functions that require an ADC or DAC channel group to be specified,
the group parameter should be set to 0 for all currently supported cards.

3.3.4 Configuring Channels as Bipolar or Unipolar

The analogue channels can be bipolar or unipolar. In bipolar mode, the signal voltage can be
negative or positive with respect to a reference. In unipolar mode, the signal voltage must be
positive with respect to the reference.

The driver software treats channels differently depending on whether they are unipolar or bipolar.
Channels can be marked as being configured for unipolar or bipolar operation using the
AIOsetADCchanMode and AIOsetDACchanMode functions (see sections 6.4.18.3 and 6.4.18.12).
These functions only affect how the driver software cooks ADC data read from the channel or
uncooks DAC data written to a channel. The cooked data representation allows the interpretation
of data values to be consistent across different cards. This setting is known as the software
unipolar/bipolar setting for the card.

AMPDIO DRIVERS

Page 37

Cooked data to be written to a DAC channel is uncooked in a card-specific way by the driver
before being output to the DAC. Raw data read from an ADC channel by the driver is cooked in a
card-specific way before being passed to the user.

The cooking or uncooking of data depends on the mode the channel is in, either unipolar or bipolar.
In general, the cooked data ranges are as follows:

Unipolar: 0 to 65535 (0 volts to max volts)
Bipolar: 32768 to +32767 (–max volts to +max volts)

For cards which have DAC or ADC channels which cannot be set to unipolar mode in hardware
(e.g. PCI234), the above unipolar range is reinterpreted so that 0 maps to the minimum voltage (–
max volts).

For cards which have DAC or ADC channels which cannot be set to bipolar mode in hardware, it is
intended for the above bipolar range to be reinterpreted so that –32768 maps to 0 volts.
Unfortunately, this reinterpretation of the bipolar range is not performed for the PC25E. This is
because the AMPDIO software does not currently distinguish the PC25E from the PC24E and the
PC24E does support bipolar mode in hardware (via jumper settings).

The above functions accept a ChanMask parameter that determines which channel(s) to configure.
There are also the AIOsetAllADCchanMode and AIOsetAllDACchanMode functions that allow all
channels in a group to be configured the same way (see sections 6.4.18.5 and 6.4.18.14). It is
more likely that these functions will be used, as on most cards, as on most cards all channels have
to be set as either unipolar or bipolar, and a mixture is not supported.

As well as configuring the software in bipolar/unipolar mode, it is also necessary to configure the
analogue hardware using on card jumpers or the specially provided hardware configuration
functions. If this is not done, output voltages or input readings may not be as expected. On the
supported PCI cards, the AIOsetAllADCchanMode and AIOsetAllDACchanMode will change the
hardware settings to match the software unipolar/bipolar configuration. There are also
AIOsetHWADCchanMode and AIOsetHWDACchanMode functions to change the hardware
unipolar/bipolar settings in a card-specific way without affecting the software unipolar/bipolar
settings (see sections 6.4.18.4 and 6.4.18.13).

3.3.5 Basic Analogue Input

In order to read an analogue voltage, the ADC channel group’s conversion source must be
configured. The AIOsetADCconvSource function (see section 6.4.19.1) allows the conversion
source to be specified. It is usual to set this to software conversion (CNV_SW) unless interrupts
are being used. For ISA cards, the selected conversion source should agree with the jumper
settings.

Once software conversion has been configured, the required analogue channel can be selected
using the AIOsetADCmultiplexer function and a software-trigger conversion can be started with the
AIOstartADCconversion function. The analogue data can then be read using AIOgetADCdata (see
section 6.4.19). It is possible to call AIOsetADCmultiplexer between calls to
AIOstartADCconversion and AIOgetADCdata. The data read is from the channel that was active
when AIOstartADCconversion was called.

3.3.6 Basic Analogue Output

The AIOsetDACchanData function (see section 6.4.20.1) is used to write to digital-to-analogue
convertors. The value written depends on whether the channel is unipolar or bipolar. The output
voltage or current produced will depend on what card type is used and how it is configured.

AMPDIO DRIVERS

Page 38

This function accepts an array of values as its data. The number of values supplied depends on
the number of channels enabled in the channel mask. For example, if the channel mask is set to 5
(1012), then an array of two values is required where:

 Array element [0] is the data for channel 0.
 Array element [1] is the data for channel 2.

3.3.7 Configuring Analogue Resources on PCI Cards

As the PCI analogue acquisition cards do not have jumpers, there are a number of functions that
allow the analogue hardware to be configured.

The AIOsetHWADCchanMode and AIOsetHWDACchanMode functions (described in sections
6.4.18.1 and 6.4.18.12) determine whether on card channel hardware is configured as unipolar or
bipolar. These functions do not affect the way the software converts data for the channels. For data
to be converted correctly, each channel’s hardware setting should agree with its software setting —
see section 3.3.4.

The AIOsetHWADCchanDiff function (described in section 6.4.18.7) determines whether input
channels are single-ended or differential. Settings are interpreted in a card type-specific way. In
single-ended mode, the channel reads the input voltage with respect to a fixed reference (analogue
ground reference). In differential mode the channels reads difference in the input voltage compared
to another input pin (single-ended channels are paired up to form differential channels). The
differential input mode of the PCI230 and PCI260 cards is actually pseudo-differential — it takes a
reading from each of the two inputs with respect to the analogue ground reference and subtracts
them.

The AIOsetHWADCchanGain function (see section 6.4.18.9) allows different gains to be
associated with different input channels. The setting is interpreted in a card type-specific way. On
the PCI230 and PCI260 each pair of channels (0&1, 2&3, etc.) has its own gain setting.

The AIOsetHWDACchanRange function (see section 6.4.18.16) allows different ranges to be
selected. The setting is interpreted in a card type-specific way. On the PCI224, it allows the output
range to be set for the whole card, but there is no control over the output ranges of individual
channels. On the PCI234, the output range is determined by a jumper setting and this function has
no effect. It is not supported on any other cards.

3.4 Using Interrupts

There are a number of functions provided by the library that use interrupts to do specific tasks.
There is also a mechanism supported by the library that allows user functions to be called on
interrupt. The easiest way to use interrupts is to use one of the supplied interrupt functions.

3.4.1 Event Recorder

Using this function, it is possible to use a stopwatch (as described in section 3.1.4) to record the
elapsed times when an external event occurs. In order to do this, the event's status output must be
connected to an 82C55 digital input’s port C0. A low-to-high transition on this pin causes an
interrupt to occur. The driver-supplied interrupt service routine reads the elapsed time from the
stopwatch timer/counters and store the time into memory.

The TCsetEventRecorder function (see section 6.4.7.4) allows you to specify a digital input chip
(PPIX or PPIY) from which Port C bit 0 will be used as the event input, and interrupt source. Once
the board's interrupt has been enabled (see function enableInterrupts — section 6.4.2.1) and a
stopwatch timer has been started, a positive going signal on the PPI Port C bit 0 pin on SK1 will
cause the elapsed time to be recorded into memory.

AMPDIO DRIVERS

Page 39

In order to determine whether any events have occurred, use the getLongIntItem function (see
section 6.4.4.14). This returns the index of the current interrupt item in the supplied buffer. The
Item can then be read using the readLongBuf function (see section 6.4.4.6).

When finished, the TCfreeEventRecorder function (see section 6.4.7.5) frees up the resources
used so they can be used again by another service. This does not free the stopwatch or buffer.

3.4.2 Digitally Controlled Oscillator

The combination of the 82C55 PPI and 82C54 counter/timer devices make it possible to implement
a digitally controlled oscillator, whereby the value of a binary number read into a PPI input channel
is used to calculate the frequency of a square wave generated on a timer/counter output. To turn
this process into a continuous background task, a second timer/counter can be deployed to
generate an update signal by generating a periodic interrupt. The interrupt service routine then
performs the DCO operation in the background. See section 6.4.10.

Function TCsetDCO sets up such an arrangement, allowing you to specify the digital input channel,
the output timer/counter and the second timer/counter used to generate the update interrupts. The
function also allows for a flexible update rate and output frequency range. The digital input channel
width (i.e. the number of bits in the digital input word) can be selected to either 1, 4, 8, 12, 16 or 24
bits by calling function DIOsetChanWidth (see section 6.4.11.4 for more details). The PPI Port(s)
used by the digital input channel must be programmed as input by calling function DIOsetMode for
each port (see section 6.4.11.7).

The enableInterrupts and disableInterrupts functions (see sections 6.4.2.1 and 6.4.2.2) must then
be called to enable and disable the 'update' interrupts, and, when finished, function TCfreeDCO
frees up the resources used so they can be used again by another program.

When using the DCO function with the PC214E, please ensure the following connections are
made:

1. The digital input bit(s) must be connected to the digital input channel specified
2. The output timer/counter clock source must be 1 MHz
3. The 'update' timer/counter MUST BE Z1 Counter 1 on the PC214E. The clock source must be

1 MHz (i.e. jumper J3 in position 2), and the frequency specified must be within the range 15
Hz to 500 kHz.

4. The interrupt source must be Z1 Timer/Counter OUT1 (i.e. jumper 5 in position 5).

3.4.3 Interrupt Callback

The driver and DIO_TC.DLL provide a mechanism that allows an external user supplied function to
be called when an interrupt occurs. This is a very powerful mechanism. Using it, you can
implement sophisticated interrupt routines without having to write a completely new interface to the
low-level driver. A small percentage of users need this facility in order to use their Amplicon
hardware effectively.

To use this facility you must be a competent programmer with knowledge of interrupts and of using
Windows callback functions. The DLL provides an alternate mechanism that allows interrupts to be
used without callback functions, by waiting or polling for the occurrence of an interrupt.

There are a number of examples of how to use this feature:

 Examples shipped with the driver.
 Examples written in C on www.mev.co.uk/suppdio.htm.
 The TCsetEventRecorder and TCsetDCO functions in the DIO_TC.DLL source.

http://www.mev.co.uk/suppdio.htm

AMPDIO DRIVERS

Page 40

Each Amplicon card has up to 6 individual sources that can cause an interrupt to occur (some have
fewer than 6 interrupt sources). The ADIO library allows a user supplied function to be called when
a particular interrupt event occurs, such as a timer interrupt or a certain PPI port pin going high.

Once the user function has been set up, the enableInterrupts and disableInterrupts functions (see
sections 6.4.2.1 and 6.4.2.2) can then be called to enable and disable the interrupts, and, when
finished, the TCfreeUserInterrupt function (see section 6.4.13.5) can be called to free up the
resources so they can be used again by another service.

The DLL supports a number of different functions to set up user interrupts, some for digital
resources, some for analogue resources, some for transferring buffers and some that have their
own threads inside the DLL for callbacks and some that do not have their own threads and do not
use callbacks. The interrupt set-up functions return a handle to refer to the user interrupt or an
error code. Other functions are available for handling non-callback user interrupts.

TCsetUserInterrupt Sets up a basic user interrupt callback for a digital resource.

TCsetUserInterruptAIO Sets up a basic user interrupt callback for an analogue

resource.

TCsetBufferUserInterrupt

Sets up a buffered user interrupt callback for a digital
resource.

TCsetBufferUserInterruptAIO

Sets up a buffered user interrupt callback for an analogue
resource.

TCsetNCBufferUserInterrupt

Sets up a non-callback buffered user interrupt for a digital
resource.

TCsetNCBufferUserInterruptAIO

Sets up a non-callback buffered user interrupt for an
analogue resource.

TCdriveNCBufferUserInterrupt

Used to transfer buffers of data for non-callback user
interrupts.

TCwaitNCBufferReady

Used to poll or wait until a non-callback buffered user
interrupt is ready for the next data transfer, with timeout
facility.

TCwaitMultiNCBufferReady

Used to poll or wait until one of several non-callback
buffered user interrupts is ready for the next data transfer,
with timeout facility.

TCfreeUserInterrupt

Frees resources for a user interrupt.

enableInterrupts

Enable user interrupts globally at the first level.

disableInterrupts

Disable user interrupts globally at the first level.

TCenableInterruptChip

Enable an individual user interrupt trigger source at the
second level. Note that all user interrupt sources are initially
enabled at the second level by the registerBoard functions,
so this is not needed unless the user interrupt trigger source
has been explicitly disabled.

TCdisableInterruptChip

Disable an individual user interrupt trigger source at the
second level. Note that all user interrupt sources are initially
enabled at the second level by the registerBoard functions.

AMPDIO DRIVERS

Page 41

TCenableUserInterrupt

Like TCenableInterruptChip except that the user interrupt
trigger source is determined from a handle returned by one
of the user interrupt set-up functions.

TCdisableUserInterrupt Like TCdisableInterruptChip except that the user interrupt
trigger source is determined from a handle returned by one
of the user interrupt set-up functions.

The user can ask the driver to read from or write to some of the card’s I/O locations, read timer
values, read an ADC channel, or write to DAC channels when that interrupt occurs and then call
the user-supplied callback function when the required amount of data has been read or more data
is required to be written.

The DIO_TC.DLL supports two different flavours of user interrupt callbacks. The simpler, non-
buffered basic version supports reading a single data value (which may be various combinations of
PPI port values, one or two timer values or a single ADC channel) on each interrupt and calling the
callback function each time. For example, in the meter example, the driver reads the ADC channel
and then calls the user function, which converts the value and displays it as a voltage.

The more general buffered version of user interrupt callback supported by DIO_TC.DLL allows
data to be read from ports, timers or ADC channels into a buffer, or written out to ports or DAC
channels from a buffer and calls the user interrupt callback function whenever enough data has
been read over a number of interrupts to fill the buffer, or more data is required to be written over a
number of interrupts. This flavour of user interrupt callback can be used in single-buffer mode, or
double buffer mode. In double buffer mode, the user callback function can be handling one buffer
whilst the driver is emptying or filling the other buffer, and the driver attempts to maintain the flow of
data whilst buffers are being switched. The double buffer mode is also known as continuous mode.

The mechanism for user call back when reading data from the card on interrupt is:

1. Interrupt occurs.
2. Driver reads interrupt source register.
3. Driver reads appropriate I/O registers and fills in user data.
4. If necessary, the driver signals DIO_TC.DLL, which schedules the appropriate user-supplied

function to be called.
5. Driver acknowledges interrupt and re-enables other system interrupts.
6. If scheduled, the user callback function is called by DIO_TC.DLL.

When writing data to the card on interrupt, the process is similar, but the user callback function is
called to get data to be written before allowing an interrupt to occur.

You can either:

 have a number of different call back routines associated with each interrupt source

(recommended)

or:

 have a generic callback routine and pass a constant in the wParam that identifies which

interrupt source caused the interrupt.

Note that the user call back function executes sometime after the interrupt has occurred. This time
delay is typically 20 s but may be as long as 200 ms if the system is busy writing to disk, network
or printer. This is because the call back is scheduled through the operating system and other
drivers will take priority.

The actual interrupt service latency is variable from machine to machine, but is typically 20 s. The
data read during the interrupt service is read with this latency and not be subject to the delay

AMPDIO DRIVERS

Page 42

associated with callback. This means that by asking the driver for data you can be sure that the
data is sampled soon after the event that caused the interrupt.

The driver supports the following data requests:

ISR_NODATA = –1 Reads value 0 from a null source.

ISR_READ_16COUNT = 0 Reads a specified 16-bit counter (Chip1, Chan1).

ISR_READ_16COUNTSTAT = 16 Reads status and count from a specified 16-bit counter

(Chip1, Chan1). Bits 23 to 16 contain the status. Bits 15 to
0 contain the count. (For PC24E/PC25E, PC26AT, PC27E
and PC30AT, bits 31 to 16 will contain the value FFFF16.)

ISR_READ_32COUNT = 1 Reads two specified 16-bit counters (Chip1, Chan1,
Chip2, Chan2). The first specified counter is read into the
low 16 bits; the second specified counter is read into the
next 16 bits and is assumed to be clocked from the output
of the first counter. From version 5.04 of the driver
onwards, both counters are read a second time. If the
second counter’s value changes between the two
readings, the second set of readings is used, otherwise
the first set of readings is used. Earlier versions of the
driver (version 3.00 onwards) only read the counters twice
if their values couldn’t be latched simultaneously (because
they were on different chips or used the older 82C53 chip).

ISR_READ_32COUNTSTAT= 17 Reads status and count from two specified 16-bit counters
(Chip1, Chan1, Chip2, Chan2), yielding two data values on
each interrupt. The status and count read from the first
specified counter is formed into the first data value. The
status and count read from the second specified counter is
formed into the second data value. The second counter is
assumed to be clocked from the output of the first counter.
From version 5.04 of the driver onwards, both counters
are read a second time. If the second counter’s value
changes between the two readings, the second set of
readings is used, otherwise the first set of readings is
used. Earlier versions of the driver (version 3.00 onwards)
only read the counters twice if their values couldn’t be
latched simultaneously (because they were on different
chips or used the older 82C53 chip). For each data value,
bits 23 to 16 contain the status and bits 16 to 0 contain the
count. (For PC24E/PC25E, PC26AT, PC27E and
PC30AT, bits 31 to 16 will contain the value FFFF16.)

ISR_READ_PPIABC = 5 Reads PPI ports A, B and C (Chip1, [Chan1=0]). Port A is
read into the low 8 bits, port B into the next 8 bits and port
C into the next 8 bits.

ISR_READ_2PPIABC = 13 Like ISR_READ_PPIABC but reads ports A, B and C from
two specified PPI chips (Chip1, Chip2), yielding two data
values on each interrupt. Ports A, B and C from the first
specified PPI chip are formed into the first data value.
Ports A, B and C from the second specified PPI chip are
formed into the second data value.

ISR_READ_3PPIABC = 14 Like ISR_READ_PPIABC but reads ports A, B and C from
three fixed PPI chips (PPIX, PPIY and PPIZ), yielding

AMPDIO DRIVERS

Page 43

three data values on each interrupt. Ports A, B and C from
the first PPI chip (PPIX) are formed into the first data
value. Ports A, B and C from the second PPI chip (PPIY)
are formed into the second data value. Ports A, B and C
from the third PPI chip (PPIZ) are formed into the third
data value.

ISR_READ_PPIC = 6 Reads port C of the interrupting PPI chip.

ISR_PC27 = 7 Reads the raw analogue data from the PC27’s ADC chip.
Not recommended.

ISR_READ_DATA8 = 8 Read an 8-bit I/O port (Chip1, Chan1).

ISR_READ_DATA16 = 9 Reads two 8-bit I/O ports (Chip1, Chan1, Chip2, Chan2).
The first port is read into the low 8 bits and the second
port is read into the next 8 bits.

ISR_READ_ADCS = 10 Reads an ADC channel, cooking the data (Group,
ChanMask). The channel is then switched ready for the
next reading. The channels specified by the channel mask
bit-vector are switched between cyclically, starting with the
lowest channel specified by the mask. If the ADC channel
group being read is the source of the interrupt and it has a
FIFO, then the interrupt is set up to make use of the FIFO.
When using the FIFO, the hardware does the channel
switching by itself. As much data as possible is read from
the FIFO on each interrupt.

ISR_READ_ADCSNOFIFO = 11 Like ISR_READ_ADCS but does not use the FIFO.

ISR_READ_ADCSFIFO = 12 Like ISR_READ_ADCS but uses the FIFO even if the
ADC channel group is not the interrupt source. Requires
the ADC channel group to have a FIFO.

ISR_READ_ADCSASAP = 15 Like ISR_READ_ADCS but if the ADC channel group has
a FIFO and it is the source of the interrupt, the FIFO
interrupt trigger level will be set to fill buffers as soon as
possible. Note that ISR_READ_ADCS also does this if the
buffer size is small (up to 128 samples for PCI230 and
PCI260) or if the interrupt is set up in non-continuous
mode.

ISR_WRITE_16COUNT = 39 Writes the initial count value of a specified 16-bit counter
(Chip1, Chan1).

ISR_WRITE_32COUNT = 40 Writes the initial count values of two specified 16-bit
counters (Chip1, Chan1, Chip2, Chan2). The upper 16 bits
of the 32-bit data value is used to set the initial count value
of the first specified counter. The lower 16 bits of the 32-bit
data value is used to set the initial count value of the
second specified counter.

ISR_WRITE_DATA8 = 32 Writes an 8-bit I/O port (Chip1, Chan1).

ISR_WRITE_DATA16 = 33 Writes two 8-bit I/O ports (Chip1, Chan1, Chip2, Chan2).
The low 8 bits are written to the first I/O port and the next
8 bits to the second I/O port.

AMPDIO DRIVERS

Page 44

ISR_WRITE_PPIABC = 34 Writes PPI ports A, B and C (Chip1, [Chan1=0]). The low 8
bits are written to port A, the next 8 bits to port B, and the
next 8 to port C.

ISR_WRITE_2PPIABC = 41 Like ISR_WRITE_PPIABC but writes to ports A, B and C
of two specified PPI chips (Chip1, Chip2) on each
interrupt. Consumes two data values on each interrupt.
The first data value is written to ports A, B and C of the
first specified PPI chip. The second data value is written to
ports A, B and C of the second specified PPI chip.

ISR_WRITE_3PPIABC = 42 Like ISR_WRITE_PPIABC but writes to ports A, B and C
of three fixed PPI chips (PPIX, PPIY and PPIZ) on each
interrupt. Consumes three data values on each interrupt.
The first data value is written to ports A, B and C of the
first PPI chip (PPIX). The second data value is written to
ports A, B and C of the second PPI chip (PPIY). The third
data value is written to ports A, B and C of the third PPI
chip (PPIZ).

ISR_WRITE_DACS = 35 Writes to a set of DAC channels, uncooking the data
(Group, ChanMask). Consumes one data value per
channel specified by the channel mask on each trigger. If
the DAC channel group being written is the source of the
interrupt and it has a FIFO, then the interrupt is set up to
make use of the FIFO. When using the FIFO, as much
data as possible is written to the FIFO on each interrupt
and the hardware is responsible for clocking of data out to
the specified set of DAC channels on each trigger.

ISR_WRITE_DACSNOFIFO
= 37

Like ISR_WRITE_DACS but does not use the FIFO.

ISR_WRITE_DACSFIFO = 38 Like ISR_WRITE_DACS but uses the FIFO even when the
DAC group being written to is not the interrupt source.
Requires the DAC group to have a FIFO.

ISR_WRITE_2DACS = 36 Writes to two DAC channels uncooking the data (Group1,
Chan1, Group2, Chan2). The lower 16 bits are uncooked
and written to the first DAC channel. The next 16 bits are
uncooked and written to the second DAC channel.

The driver supports the following interrupt source values for each card (these values are used for
the Chip parameter of the user interrupt set-up function). The column labelled 'Multi' indicates
whether the driver allows more than one interrupt source to be in use simultaneously.

Card Type Interrupt Sources Multi
PC212E PPIXC0=0, PPIXC3=4, Y1=8, Y2=12, Z1=16, Z2=20 Yes
PC214E PPIXC0=0, PPIXC3=4, PPIYC0=8, PPIYC3=12, Z1=16 No
PC215E, PCI215 PPIXC0=0, PPIXC3=4, PPIYC0=8, PPIYC3=12, Z1=16, Z2=20 Yes
PC218E X1=0, X2=4, Y1=8, Y2=12, Z1=16, Z2=20 Yes
PC272E, PCI272 PPIXC0=0, PPIXC3=4, PPIYC0=8, PPIYC3=12, PPIZC0=16,

PPIZC3=20
Yes

PC36AT, PCI236 PPIX=0, PPIXC3=4 (both refer to same interrupt source) No
PC263, PCI263 N/A N/A
PC24E, PC25E Y1=8 No
PC26AT ADC0=0 No
PC27E ADC0=0 No
PC30AT ADC0=0, X2=4, PPIY=8, PPIYC7=8, 12 No

AMPDIO DRIVERS

Page 45

PCI224, PCI234 EXT0=0, DAC2=8, Z2=20 Yes
PCI230 PPIXC0=0, PPIXC3=4, ADC2=8, SATRIG=121, DAC4=162,

Z2=20
Yes

PCI260 0, 4, ADC2=8, Z2=20 (0 and 4 are non-functional) Yes

1 SATRIG is supported on PCI230+ and PCI260+.
2 DAC4 is supported on PCI230+ hardware version 2.

The interrupt source constants above have the following meanings:

X1, X2, Y1, Y2, Z1, Z2

Interrupt source is the output of one of the counters of the
timer / counter chip at this address offset (counter 1 on
PC212E, PC214E, PC215E, PCI215, PC218E, PCI224,
PCI230, PCI234 and PCI260; counter 0 on PC30AT;
determined by jumpers on PC24E and PC25E).

PPIXC0, PPIXC3, PPIYC0,
PPIYC3, PPIZC0, PPIZC3

Interrupt source is port C bit 0 or port C bit 3 of the PPI chip
at this address offset.

PPIYC7

Interrupt source is port C bit 7 of the PPI chip at this
address offset (PC30AT only).

PPIX

Interrupt source is one bit of port C of PPIX (bit 3 on
PC36AT and PCI236).

PPIY

Interrupt source is one bit of port C of PPIY (bit 7 on
PC30AT).

ADC0

Interrupt source is A/D conversion complete (PC26AT,
PC27E and PC30AT).

ADC2

Interrupt source is A/D conversion complete or ADC FIFO
at or above trigger level (PCI230 and PCI260).

DAC2

Interrupt source is DAC FIFO at or below trigger level
(PCI224 and PCI234).

DAC4

Interrupt source is DAC FIFO at or below trigger level
(PCI230+ hardware version 2).

EXT0

Interrupt source is external trigger (PCI224 and PCI234).

SATRIG

Interrupt source is “ADC start acquisition trigger occurred”
(PCI230+ and PCI260+).

The PC214E and PC30AT cards have multiple possible interrupt sources (and so do the PC24E
and PC25E in choice of counter output). The choice of interrupt source is selected by hardware
jumpers.

Although the PC30AT can be connected to two interrupt lines, the driver supports at most one IRQ
per card, so either J20 or J22 should be disconnected from J21.

3.4.3.1 Basic Interrupt Callback

The TCsetUserInterrupt and TCsetUserInterruptAIO functions (see sections 6.4.13.1 and 6.4.13.2)
allow a user-specified function to be called back every time a data value is read by the driver’s
interrupt routine. The functions allow the user to specify the interrupt source, the type of data to be

AMPDIO DRIVERS

Page 46

read and any additional parameters required to specify the source of the data to be read (see table
of data request types in section 3.4.3). These functions are currently only supported by the C/C++
and Delphi bindings supplied with the driver. For Visual Basic, the non-callback functions described
in section 3.4.3.3 may be used instead.

The TCsetUserInterrupt function is mainly for digital resources; the following types of data may be
requested:

 ISR_NODATA
 ISR_READ_16COUNT
 ISR_READ_16COUNTSTAT
 ISR_READ_32COUNT
 ISR_READ_PPIABC
 ISR_READ_PPIC
 ISR_PC27
 ISR_READ_DATA8
 ISR_READ_DATA16

The TCsetUserInterruptAIO function is for analogue resources; the following types of data may be
requested:

 ISR_READ_ADCS
 ISR_READ_ADCSNOFIFO
 ISR_READ_ADCSFIFO
 ISR_READ_ADCSASAP

If the channel mask is set up to read more than one analogue channel, then the channels will be
read in a cyclic sequence starting with the lowest. For example, if the channel mask is set to 5
(1012), data will be read first from channel 0, then from channel 2, then cycling back to channel 0.

The functions also specify the callback function to be called and a user parameter which is passed
on to this callback function when it is called. The user must supply a callback function of the form:

typedef VOID (CALLBACK *TTCCALLBACK)(short h
 , WPARAM wParam
 , ULONG lParam
);

The wParam parameter is the user parameter specified in the TCsetUserInterrupt or
TCsetUserInterruptAIO function call. It can be any user value, a pointer to a user’s data structure, a
user code etc. The lParam contains the data the read by the driver. See section 6.4.13.4 for a
detailed description of the callback function.

3.4.3.2 Transferring Buffers Under Interrupt Control

The basic interrupt callback described in section 3.4.3.1 only allows data to be read from the card
on interrupt and only passes one value at a time to the user interrupt callback function. In addition,
each data value is passed from the kernel driver level to the user level in individual messages,
which causes a large system overhead at high data rates). To deal with these problems, the
buffered user interrupt functions described in this section may be used.). These functions are
currently only supported by the C/C++ and Delphi bindings supplied with the driver. For Visual
Basic, the non-callback functions described in section 3.4.3.3 may be used instead.

The TCsetBufferUserInterrupt and TCsetBufferUserInterruptAIO functions (see sections 6.4.14.1
and 6.4.14.2) allow a user to be called back and to read or write large buffers of information to the
driver. The callback function is only called when a bufferful of data has been read or another
bufferful of data is required to be written. The functions allow the user to specify the interrupt

AMPDIO DRIVERS

Page 47

source, the type of data transfer required and any other parameters required to specify where the
data is to be read from or written to (see table of data request types in section 3.4.3).

The TCsetBufferUserInterrupt function is mainly for digital resources; the following types of data
transfer may be requested:

 ISR_NODATA
 ISR_READ_16COUNT
 ISR_READ_16COUNTSTAT
 ISR_READ_32COUNT
 ISR_READ_32COUNTSTAT
 ISR_READ_PPIABC
 ISR_READ_2PPIABC
 ISR_READ_3PPIABC
 ISR_READ_PPIC
 ISR_PC27
 ISR_READ_DATA8
 ISR_READ_DATA16
 ISR_WRITE_16COUNT
 ISR_WRITE_32COUNT
 ISR_WRITE_DATA8
 ISR_WRITE_DATA16
 ISR_WRITE_PPIABC
 ISR_WRITE_2PPIABC
 ISR_WRITE_3PPIABC

The TCsetBufferUserInterruptAIO function is used for most analogue resources; the following
types of data transfer may be requested:

 ISR_READ_ADCS
 ISR_READ_ADCSNOFIFO
 ISR_READ_ADCSFIFO
 ISR_READ_ADCSASAP
 ISR_WRITE_DACS
 ISR_WRITE_DACSNOFIFO
 ISR_WRITE_DACSFIFO

In addition, there is a TCsetBufferUserInterrupt2 function (see section 6.4.14.3) which supports the
following types of data transfer:

 ISR_WRITE_2DACS

The functions also allow the user to specify the length of buffers required. The minimum length
allowed is 1, but for the supplied DIO_TC.DLL code prior to AMPDIO v4.23 there is a bug which
stops buffer lengths less than 2 working correctly. The buffers are created by the DLL.

The functions also allow the user to specify whether double buffering or single buffering is to be
used. If double buffering is being used, the DIO_TC.DLL and the driver try to keep up a continuous
flow of data between the user and the driver — the driver can be dealing with one buffer while the
user callback function is dealing with the other. This mode is used when the fContinuous parameter
is set to TRUE in the interrupt set-up function. If fContinuous is set to FALSE, single buffering is
used and there is no attempt to maintain a continuous flow of data between buffers.

The functions also specify the callback function to be called and a user parameter that is passed
on to this callback function when it is called. The user must supply a callback function of the form:

typedef VOID (CALLBACK *TTCBCALLBACK)(short h
 , WPARAM wParam
 , ULONG sizeofBuffer

AMPDIO DRIVERS

Page 48

 , PULONG pBuffer
);

The wParam parameter is the user parameter specified in the interrupt set-up function call. It can
be any user value, a pointer to a user’s data structure, a user code etc. The sizeofBuffer parameter
is the length of the buffer being passed to the function. This is generally the buffer length passed to
the interrupt set-up function. It is possible for sizeofBuffer to be 0 if an error has occurred. The
pBuffer parameter points to the buffer in memory. In Delphi, it may be treated as a pointer to an
array. See section 6.4.14.4 for a detailed description of the callback function.

If the buffer contains data for multiple analogue channels, it may be useful to treat the buffer
pointed to by the pBuffer parameter as a 2-dimensional array with the size of the inner dimension
being the number of channels selected by the ChanMask parameter passed to the
TCsetBufferUserInterruptAIO interrupt set-up function. The buffer size specified should be a
multiple of the number of selected channels so that the data in each buffer starts on the same
channel.

For example, if the ChanMask is set to 5 (1012), then two channels (0 and 2) are selected. If the
buffer is treated as a 1-dimensional array (starting at index 0) then:

 Array element [0] is the first data element for channel 0.
 Array element [1] is the first data element for channel 2.
 Array element [2] is the second data element for channel 0.
 Array element [3] is the second data element for channel 2.

If the above buffer is treated as a 2-dimensional array with an inner dimension of size 2 (starting at
index 0, 0), then:

 Array element [0][0] is the first data element for channel 0.
 Array element [0][1] is the first data element for channel 2.
 Array element [1][0] is the second data element for channel 0.
 Array element [1][1] is the second data element for channel 2.

The above assume that the buffer size is a multiple of 2. Array syntax varies with language — The
above is based on the ‘C’ language.

The same construct may be used for the other interrupt data transfer types that yield or consume
more than one 32-bit data value on each interrupt, such as ISR_READ_2PPIABC and
ISR_WRITE_2PPIABC.

3.4.3.2.1 Acquiring AC Analogue Signals

By using this mechanism, the user can acquire AC analogue signals. In the “SCOPE” example, the
user function instructs the driver to acquire two channels of analogue data into a buffer. This buffer
is then formatted on a graph resembling an oscilloscope. It is possible to sample at a total rate of
312500 samples per second for short periods on the original PCI230 and PCI260 cards. For the
new PCI230+ and PCI260+ cards, the total maximum rate is reduced to 250000 samples per
second. This is the maximum total sample rate for all channels combined. The sample rate for the
PCI230 and PCI260 cards is independent of machine performance, however this is not true of the
supported ISA cards.

3.4.3.2.1.1 Controlling Timing for Reading Multiple Analogue Channels

When reading multiple analogue channels, the channels are read sequentially, but only one
channel is read per conversion trigger. If a rate generator is set up on a timer/counter channel
acting as a conversion trigger, then to sample N channels at a frequency f, the rate generator can
be set to generate a frequency of (N × f). This will result in the channels being read interleaved

AMPDIO DRIVERS

Page 49

across equal periods of time, i.e. the time between sampling the first channel and the next channel
is the same as the time between sampling the last channel and the first channel of the next cycle.

For some applications it is desirable to read all the desired channels in a short period, then have a
long gap before starting the next reading cycle. On the PCI230 and PCI260, this may be
accomplished by using the periodic pulse train generation functions introduced in version 4.32 of
the library. The more general of these functions, TCsetPeriodicPulseTrain (see section 6.4.8.7)
allows the number of pulses in each pulse train, the duration of each pulse train and the frequency
of pulse trains to be set. Normally, the number of pulses in each train would be set to the number
of channels being read.

If the set of channels is to be sampled at a fairly low frequency, the buffer length specified in the
call to the user interrupt set-up function can also be set to the number of channels, then the user
interrupt callback function will be called once for each set of readings. The user interrupt set-up
function should be set to use ‘continuous’ mode.

There is a restricted version of the periodic pulse train generator provided by the
TCsetRestrictedPulseTrain function (see section 6.4.8.14) which is similar but provides much less
control over the duration of the pulse train, typically a duration of 1 ms or 100 µs would be used for
the PCI230 or PCI260 and all the desired channels would be sampled over this period.

It is also possible to read a set of channels on a hardware trigger using the
TCsetOneShotPulseTrain function (see section 6.4.8.20), rather than read them periodically. This
trigger could be provided by the output of another timer/counter channel rather than an external
trigger signal. This is effectively how the TCsetPeriodicPulseTrain function is implemented. Another
possibility would be to use a timer/counter to implement a delay after an external hardware trigger
using timer/counter mode 5 (hardware triggered strobe).

On previous versions of the PCI230 and PCI260 cards there is a problem using the controlled
timing mechanisms. This is fixed in hardware on PCI230 cards bearing a sticker labelled
PR989386.4 on chip U19, and on PCI260 cards bearing a sticker labelled PR989385.4 on chip
U19. A software workaround can be used with caution on older cards in some circumstances.

The problem on older versions of the cards is due to the possibility of an ADC conversion being
triggered by a change to the configured value of the ADC conversion trigger source (e.g. by the
function AIOsetADCconvSource — see section 6.4.19.1). If the old conversion trigger source was
at a low logic level and the new conversion trigger source is at a high logic level and ADC
conversion is triggered. (N.B. the conversion trigger source CNV_NONE is always at a low-logic
level; the conversion trigger source CNV_SW is at a low logic level except at the time of the actual
software trigger.) This is a problem when setting the conversion trigger source to one of the timer
channels (CNV_CT0, CNV_CT1 or CNV_CT2) as a conversion trigger may or may not occur at
this time (depending on the state of the timer’s output). This does not affect the correspondence
between buffer positions and channels but does affect the position of the long gap within the
sequence of channel readings.

The bogus ADC trigger can also occur at the start of each user interrupt data buffer if single
buffering (as opposed to double buffering) is used. In single buffer mode, the driver resets the ADC
FIFO and this process involves temporarily setting the conversion trigger source to CNV_NONE. A
bogus trigger can occur when the conversion trigger source is reset to the configured value.

As a software workaround, there is a function TCflushUserInterrupt (see section 6.4.16.2) that may
be called to reset the ADC FIFO (amongst other things) to work around the problem. This function
should be used with caution as it uses a partial FIFO reset sequence (it does not set the
conversion trigger source to CNV_NONE) that can cause the correspondence between ADC
channels and buffer positions to be lost. To avoid this, the caller must use some means to ensure
that an ADC conversion cannot be triggered during this function call, and it must do that without
reconfiguring the conversion trigger source temporarily before the function call. This workaround is
particularly tricky for single buffer mode interrupts due to the possibility of the bogus trigger

AMPDIO DRIVERS

Page 50

occurring at the start of every buffer. It is recommended that the hardware fix is applied to avoid the
problem altogether.

3.4.3.2.1.2 Controlling Start of Aquisition on PCI230+ and PCI260+

For the new PCI230+ and PCI260+ cards, it is possible to delay the start of acquisition until a
programmable start acquisition trigger occurs. Alternatively, data can be acquired as normal while
keeping a count of the number of samples stored until the start acquisition trigger occurs. If the
card is set to delay the start of acquisition, data acquired from each channel will be placed into a
temporary buffer instead of the FIFO, and then either discarded (if the trigger has not occurred yet)
or transferred to the FIFO (if the trigger has occurred). Once the start acquisition trigger has
occurred, subsequent channel readings will be placed into the FIFO as normal.

The function AIOsetADCstartAcquisitionTrigger (see section 6.4.19.5) is used to set the start
acquisition trigger. This is supported since version 4.42 of the AMPDIO driver and DIO_TC.DLL.
The following start acquisition trigger types are supported by PCI230+ and PCI260+ cards:

TRIG_NOW

Trigger immediately.

TRIG_NEVER

Never trigger.

TRIG_EXT_LTOH

Trigger on external digital low-high transition.

TRIG_EXT_HTOL

Trigger on external digital high-low transition.

TRIG_EXT_LOW

Trigger when external digital signal is low.

TRIG_EXT_HIGH

Trigger when external digital signal is high.

TRIG_ANA_LTOH

Trigger on analogue low-high transition.

TRIG_ANA_HTOL

Trigger on analogue high-low transition.

TRIG_ANA_LOW

Trigger when analogue value is low.

TRIG_ANA_HIGH

Trigger when analogue value is high.

For start acquisition triggers involving an analogue value, the channel, threshold, hysteresis and a
hold-off value are specified in the function call. (The hysteresis is applied for ‘TRIG_ANA_LTOH’
and ‘TRIG_ANA_HTOL’.) The specified channel should be one of those being acquired by the user
interrupt, as no other channels will be sampled. It should also be noted that analogue levels and
transitions are only detected when it is the specified channel’s turn to be sampled.

If the user interrupt is set up to use ‘non-continuous’ mode, the start acquisition trigger is applied at
the start of every buffer received by the driver from the DLL. In ‘continuous’ mode, the start
acquisition trigger is applied only to the first buffer received by the driver from the DLL.

The following start acquisition start types are supported by PCI230+ and PCI260+ cards:

START_NOW

Start acquisition as soon as possible (pre-trigger mode).

START_TRIG

Start acquisition when trigger occurs.

When set to ‘START_NOW’, the trigger is not applied until the number of samples specified by the
hold-off value have been aqquired; data acquired before the trigger occurs is stored in the FIFO
(and read out of the FIFO) as normal. When set to ‘START_TRIG’, the hold-off value must be zero;
data acquired before the trigger occurs is discarded by the hardware.

AMPDIO DRIVERS

Page 51

The function AIOgetADCpretriggerCount (see section 6.4.19.6) can be used to determine whether
the start acquisition trigger has occurred. When the start acquisition type is set to ‘START_NOW’ it
also indicates the number of samples that were acquired before the trigger occurred (a pre-trigger
count).

For the original PCI230 and PCI260 and other supported ADC cards, the only supported start
acquisition trigger source is ‘TRIG_NOW’ and the only supported start type is ‘START_NOW’. For
backward compatibility with older software, the driver resets the start acquisition trigger source to
‘TRIG_NOW’ and the start type to ‘START_NOW’ whenever a board handle is obtained using the
registerBoardEx or equivalent function.

For the PCI230+ and PCI260+, the specified start acquisition trigger is only used if the ADC FIFO
is used. It will not be used if the user interrupt is set-up with data type set to
‘ISR_READ_ADCSNOFIFO’.

3.4.3.2.2 Playing AC Analogue Signals

The same mechanism can be used to play analogue signals. In the signal generator example, the
user function copies a known pattern into a buffer. The buffer is then written to the digital to
analogue converters under driver control. By using this mechanism, it is possible to play a pattern
out on a PC24E DAC card at a sample rate of up to 25 kHz using a typical P166 machine. Note
that the rate at which the driver can produce a signal deterministically is related to machine
performance and may be impinged by other driver software loaded on to the machine.

3.4.3.3 Using Interrupts Without Callbacks

The basic user interrupt callback mechanism described in section 3.4.3.1 and the buffered user
interrupt callback mechanism described in section 3.4.3.2 both result in the creation of a thread
within the DLL which is responsible for transferring data between the driver and the callback
function. In some programming environments, this is impossible to handle. They are currently only
supported by C/C++ and Delphi bindings supplied with the driver.

Since AMPDIO v4.00, the DLL supports another mechanism for setting up buffered user interrupts
which does not involve callbacks or creation of extra threads. It allows the main thread to poll the
interface to see if data is ready (similar to the way the Event Recorder mechanism is used) or to
wait until data is ready with an optional timeout (a poll is just a wait with a timeout of 0). These
functions were originally written to support HP Vee applications, but can be used in other
programming environments.

The functions to set-up the buffered user interrupts without callbacks are
TCsetNCBufferUserInterrupt, TCsetNCBufferUserInterruptAIO and TCsetNCBufferUserInterrupt2
(see sections 6.4.15.1, 6.4.15.2 and 6.4.15.3). These are called similarly to the
TCsetBufferUserInterrupt, TCsetBufferUserInterruptAIO and TCsetBufferUserInterrupt2 functions
to set up the interrupt source, the type of data transfer, the data source or destination on the card,
the length of the buffers and whether single or double buffering is to be used (see section 3.4.3.2),
but do not have parameters for passing a callback function or a user parameter.

Once interrupts have been enabled by calling enableInterrupts, the user program can use the
TCdriveNCBufferUserInterrupt function (see section 6.4.15.4) to copy data from one of the interrupt
data buffers into a user array (when reading data from the card) or from a user array into an
interrupt data buffer (when writing data to the card). A whole buffer length of data is copied in each
case.

The TCdriveNCBufferUserInterrupt function will perform a blocking wait if necessary until it is
possible to transfer the data. It is useful to be able to poll to see whether or not the
TCdriveNCBufferUserInterrupt function will wait, so that the program can go and do something else
for a while instead. Since AMPDIO v4.02, the TCwaitNCBufferReady function (see section

AMPDIO DRIVERS

Page 52

6.4.15.5) has been available, which allows the caller to tell whether or not
TCdriveNCBufferUserInterrupt would block. The TCwaitNCBufferReady function has a timeout
parameter that allows it to wait until either a specified maximum number of milliseconds have
elapsed (rounded up to a number of system clock ticks), or it is known that
TCdriveNCBufferUserInterrupt may be called without blocking. The return value indicates which of
these conditions is the case. Specifying a timeout of 0 milliseconds results in a simple poll. The
timeout can be set to INFINITE to stop it expiring, but you might as well not bother calling the
TCwaitNCBufferReady function in that case.

If multiple non-callback user interrupts are to be handled, The TCwaitNCBufferReady function may
be used with a timeout of zero with each user interrupt in turn to see which ones require attention.
In AMPDIO v4.20, the TCwaitMultiNCBufferReady function was introduced (see section 6.4.15.6).
This function allows you to wait on or poll multiple non-callback user interrupts simultaneously. It is
quite tricky to set up, requiring two input arrays which between them hold a board handle and user
interrupt handle pairing at each index of the array. Another parameter indicates the number of user
interrupts being handled. There is also a timeout parameter to indicate the maximum number of
milliseconds to wait, which may be 0, some number or INFINITE. The function returns indicating
whether the timeout expired or TCdriveNCBufferUserInterrupt can be called without blocking for
one of the specified user interrupts. Two other parameters are used by reference to return the
board handle and user interrupt handle of such a user interrupt.

When using the non-callback user interrupt handling to read data values from the driver
(ISR_READ_... data requests), the following should be noted. Once the user interrupt has been set
up and enabled, then if the fContinuous parameter was set to FALSE when the user interrupt was
set up, no buffer is sent to the driver to be filled in until the first call to
TCdriveNCBufferUserInterrupt, TCwaitNCBufferReady or TCwaitMultiNCBufferReady for this user
interrupt. If the fContinuous parameter was set to TRUE for continuous double-buffered operation,
then only one buffer is sent to the driver to be filled in when the user interrupt is enabled and the
other buffer is sent on the first call to TCdriveNCBufferUserInterrupt, TCwaitNCBufferReady or
TCwaitMultiNCBufferReady.

The driver will not enable the interrupt until it receives the first buffer to be filled in. For some
applications, it is necessary to ensure that the driver has enabled the interrupt and has a buffer to
fill in before some other initialization is performed that allows interrupts to be generated. This can
be done with a call to TCwaitNCBufferReady or TCwaitMultiNCBufferReady with a timeout of 0
before this other initialization is performed (but after the call to enableInterrupts).

AMPDIO DRIVERS

Page 53

4 SOFTWARE INSTALLED WITH THE DRIVER

4.1 Installed Software

The self-extracting executable installs the following software into the target directory.

Sub-
Directory

\DIO_CODE Source code and documentation for DIO_TC.DLL API library.
\EX_VB Visual Basic examples (VB 5.0 onwards)
\EX_DELPH Delphi examples (Delphi 3.0 onwards)
\EX_VEE Agilent Vee Pro / Hewlett Packard HP VEE examples
\EX_C Win32 console examples in C
\EX_VBNET Visual Basic .NET examples
\EX_C# Visual C# .NET examples
\SYS_DLLs System DLLs (not present for AMPDIO v5.00 onwards)

The software includes examples as both runtime and source code. The runtime examples can be
used to exercise and become familiar with the hardware. The source code serves two purposes.
Firstly, it can be used as a source of reference to see how the DLL functions are used. In addition,
it provides a starting point for anyone who wishes to write software with similar functionality.

4.2 Visual Basic Examples

The sub directory EX_VB contains the executables and source code for a number of example
applications written in Microsoft Visual Basic 5.0, service pack 2. AMPDIO v5.00 switched to using
Visual Basic 6.0 to build the executables, but the project files can still be loaded in VB 5.0 if the
warnings about invalid key ‘Retained’ are ignored. AMPDIO v5.00 installs the VB 6.0 run-time
support files automatically. Earlier versions may require the VB 5.0 run-time support files to be
installed manually — see section 4.9 or follow the instructions in the ‘README_DLL.TXT’ file found
in the ‘SYS_DLLS’ directory (not present in AMPDIO 5.00 and later).

4.2.1 Digital IO — INOUT.EXE

The “IN OUT” example demonstrates basic Digital IO using
the 82C55 peripheral port interface. It runs on all supported
Amplicon cards that have PPI resources, PC212E,
PC214E, PC215E, PC263, PC272E, PC30AT, PC36AT,
PC36LP, PCI215, PCI230, PCI236, PCI263 and PCI272.

It allows the user to select PPI ports as inputs or outputs,
set outputs high or low and monitor their actual state.

It does not use interrupts.

4.2.2 Timer — BASICTMR.EXE

The “Basic Timer” example demonstrates setting up and using the 82C54 compatible timers on
Series 200 Digital IO Cards. It runs on the PC212E, PC214E, PC215E, PC218E, PC24E/PC25E,
PC26AT, PC27E, PC30AT, PCI215, PCI224, PCI230, PCI234, and PCI260.

AMPDIO DRIVERS

Page 54

It allows the available timer resources to be programmed in a variety of modes (rate, single shot
etc.) and frequencies.

It does not use interrupts.

4.2.3 Frequency Multiplier — FREQMULT.EXE

The “Frequency Multiplier” example demonstrates using the TCmultiplyFreq function on Series 200
Digital IO Cards. It runs on the PC212E, PC214E, PC215E, PC218E and PCI215 digital counter
timer cards.

It measures a frequency using one set of timer channels and produces a multiplied version of that
frequency on another.

It does not use interrupts

4.2.4 Event Recorder — EVENTREC.EXE

The “Event Recorder” example demonstrates the use of the “TCsetEventRecorder” function on
Series 200 Digital IO Cards. It runs on the PC212E, PC214E, PC215E, PCI215 and PCI230.

It starts a millisecond timer and records when PPI X Bit C3 interrupt occurs.

It requires that the cards be installed with interrupts.

4.2.5 Digital IO With Interrupts — DIO_EX.EXE

The “Extended DIO” example demonstrates sending buffers of
information to the 82C55 PPI interface under interrupt control. A strobe
pattern is played out the PPI port. It runs on the PC212E, PC214E,
PC215E, PC30AT, PCI215 and PCI230 cards.

It requires that the cards be installed with interrupts.

Versions of this example supplied with AMPDIO v4.31 or earlier cannot be compiled and run under
Visual Basic 6.0.

4.2.6 Voltmeter — METER.EXE

The “Meter” example is a multi-channel voltage meter
example. It runs on the PC26AT, PC27E, PC30AT, PCI230
and PCI260 cards. Care must be taken to set up any card
jumpers correctly.

It does not use interrupts.

Versions of this example supplied with AMPDIO v4.31 and
earlier required the card to be installed with interrupts.
Because of the style of user interrupt set-up functions used,
these versions could not be compiled and run under Visual
Basic 6.0.

AMPDIO DRIVERS

Page 55

4.2.7 D-to-A Converter — DACSET.EXE

The “DACSet” example uses a slider to
write values to a DAC channel. It allows
the jumper settings in use to be set and
the channel to be chosen and displays
the numeric values written to the driver
and the real value of the output in volts or
milliamps. It may be of use for calibration
of the DACs. It runs on the
PC24E/PC25E, PC30AT, PCI224,
PCI230 and PCI234. It requires Visual
Basic 5.0 SP2 or higher.

It does not use interrupts.

4.2.8 Registerable Board Lister — REGBOARD.EXE

The “RegBoard” example attempts to register each
board in turn using the registerBoardEx function (see
section 6.4.1.2) and lists details of the boards it
managed to register using information provided by the
GetBoardModel, GetBoardBase, GetBoardIRQ and
GetBoardPciPosition functions (see sections 6.4.1.4,
6.4.1.5, 6.4.1.6 and 6.4.1.7).

4.2.9 Stopwatch — STOPWATCH.EXE

The “Stopwatch” example source code illustrates the setting up and
reading of a cascaded pair of 82C54-compatible timer channels
using the TCsetClock, TCsetGate, TCsetMode, TCsetCount,
TCgetStatus and TCgetCounts functions (see sections 6.4.5.3,
6.4.5.6, 6.4.5.9, 6.4.5.12, 6.4.5.10 and 6.4.5.16).

4.3 Delphi Examples

The sub directory EX_DELPH contains the executables and source code for a number of example
applications written in Borland Delphi 3.0. The source code can be recompiled for newer versions
of Delphi.

4.3.1 Timer — TIMER.EXE

The “Timer” example demonstrates setting up and using
the 82C54 compatible timers on Series 200 Digital IO
Cards. It runs on the PC212E, PC214E, PC215E,
PC218E, PC24E/PC25E, PC26AT, PC27E, PC30AT,
PCI215, PCI224, PCI230, PCI234 and PCI260.

It allows the available timer resources to be programmed
in a variety of modes (rate, single shot etc.) and
frequencies.

It is similar in operation to the Visual Basic “BASICTMR”
example.

AMPDIO DRIVERS

Page 56

It does not use interrupts.

4.3.2 Digital IO — INOUT.EXE

The “IN OUT” example demonstrates basic Digital IO using the 82C55 peripheral port interface. It
runs on all supported Amplicon cards that have PPI resources, PC212E, PC214E, PC215E,
PC263, PC272E, PC30AT, PC36AT, PC36LP, PCI215, PCI230, PCI236, PCI263 and PCI272.

It allows the user to select PPI ports as inputs or outputs, set outputs high or low and monitor their
actual state.

It is equivalent to the Visual Basic “INOUT” example.

It does not use interrupts.

4.3.3 Digital IO With Interrupts — PDIO_EX.EXE

The “Extended DIO” example demonstrates sending buffers of information to the 82C55 PPI
interface under interrupt control. A strobe pattern is played out the PPI port. It runs on the PC212E,
PC214E, PC215E, PC30AT, PCI215 and PCI230 cards. It is equivalent to the Visual Basic
“DIO_EX” example.

It requires that the cards be installed with interrupts.

4.3.4 Voltmeter — METER.EXE

The “Meter” example is a multi-channel voltage meter example. It runs on the PC26AT, PC27E,
PC30AT, PCI230 and PCI260 cards. Care must be taken to set up any card jumpers correctly.

Unlike the Visual Basic “METER” example, this one uses interrupts.

4.3.5 Oscilloscope — OSSCOPE.EXE

The “Scope” example demonstrates a simple
low frequency two-channel oscilloscope
function with adjustable trigger level.
Depending on computer performance, it can
be configured with a sample frequency of up to
25 kHz on the PC30AT card. It runs on the
PC26AT, PC27E, PC30AT, PCI230 and
PCI260 cards. Care must be taken to set up
any card jumpers correctly.

It requires that the cards be installed with interrupts.

4.3.6 Signal Generator — SIGGEN.EXE

The “Siggen” example is a simple signal generator that
demonstrates sending data buffers to DAC converters
under interrupt control. It can generate sine, square,
triangle and pulse waveforms on up to 4 DAC channels. It
runs on the PC24E, PC25E, PC30AT, PCI224 PCI230
and PCI234 cards. Care must be taken to set up any card

AMPDIO DRIVERS

Page 57

jumpers correctly.

It requires that the cards be installed with interrupts.

4.4 Agilent VEE Pro / Hewlett Packard HP VEE Examples

The sub directory EX_VEE contains the VEE examples written in VEE 4.0 and VEE 5.0. It also
contains “dio_vee.h” the header file that allows DIO_TC.DLL to be imported into VEE and
“dio_tc_lib.vee” which contains a number of VEE helper functions.

4.4.1 ADC Test — ADCTEST.VEE

The ADC test example implements a simple oscilloscope in VEE. It runs on the PC26AT, PC27E,
PC30AT, PCI230 and PCI260 cards. Care must be taken to set up any card jumpers correctly.

It requires that the cards be installed with interrupts.

4.4.2 DAC Test — DACTEST.VEE

The DAC test example implements a simple signal generator function in VEE. It runs on the
PC24E, PC25E, PC30AT, PCI224 PCI230 and PCI234 cards. Care must be taken to set up any
card jumpers correctly.

It requires that the cards be installed with interrupts.

4.4.3 Digital Input — DIGINPUT.VEE

The Digital Input example demonstrates simple digital IO in VEE. It runs on the series 200 digital IO
/ counter timer cards, PC212E, PC214E, PC215E, PC272E, PC36AT, PCI215 and PCI236. It does
not use interrupts.

4.4.4 Timer Demo — TIMERDEM.VEE

The Timer Demo example demonstrates using timers in VEE. It runs on the series 200 digital IO /
counter timer cards, PC212E, PC214E, PC215E, PC218E and PCI215.

It does not use interrupts.

4.5 Win32 Console Examples in C

The sub-directory EX_C contains source code and executables for Win32 console (character
mode) examples written in C.

The examples have been developed with Microsoft Visual C++ 4.2, using the C language (rather
than C++). They run in the Win32 console (DOS box) and make use of standard C library functions
and Win32 library functions, in addition to the Amplicon DIO_TC.DLL library functions.

The .MDP files are project files for Microsoft Visual C++ 4.0 onwards. The .DSW files are project
files for Microsoft Visual C++ 6.0 onwards. The .vcproj files are project files for Microsoft Visual
Studio 2005 onwards. As supplied, they define '..\DIO_CODE' as an additional include directory
(under Build -> Settings -> C/C++ -> Category: Preprocessor) and add ..\DIO_CODE\dio_tc.lib to
the list of Object/library modules (under Build -> Settings -> Link). For AMPDIO v5.00 and later,
dio_tc.lib has been moved to ..\DIO_CODE\Win32 for the 32-bit “Win32” build and to

AMPDIO DRIVERS

Page 58

..\DIO_CODE\x64 for the “x64” build. If things are moved around, then the project settings need to
be adjusted accordingly (in which case it is probably easiest to copy the adioctl.h, dio_tc.h and
dio_tc.lib into the same directory as the rest of the application files).

For later versions of Microsoft Visual C++, the project files can be automatically converted to use
the new version when they are opened. It is possible to build the examples using the free “Express”
edition of Visual C++, but it will also be necessary to obtain and install “Microsoft Platform SDK”
and configure the directories in the “Projects and Solutions” section in the “Options” dialog in Visual
C++ Express. In that section the following paths should be added to the appropriate subsections:

 Executable files: C:\Program Files\Microsoft SDK\Bin
 Include files: C:\Program Files\Microsoft SDK\include
 Library files: C:\Program Files\Microsoft SDK\Lib

(The above paths need to be changed if the Platform SDK has been installed somewhere else.)
These options are global, not part of a specific project, so they only need to be configured once.

The following header files from the ‘..\DIO_CODE’ directory are common to all the applications:

 adioctl.h
 dio_tc.h

In addition, the standard C header files and the Win32 header files are required, but should already
be in the standard include path.

For Microsoft Visual C++, the applications are linked to ‘..\DIO_CODE\dio_tc.lib’, which is a stub
library for DIO_TC.DLL. Note that ‘..\DIO_CODE\dio_tc.lib’ is not compatible with other non-
Microsoft compilers such as Borland C++ builder, but it is relatively straightforward to create a
‘dio_tc.lib’ file compatible with other compilers from the supplied ‘DIO_TC.DLL’ or
‘..\DIO_CODE\dio_tc.def’ files, e.g. using the IMPLIB utility for Borland C.

In addition to ‘dio_tc.lib’, the standard C libraries and Win32 libraries are linked to.

See the README.TXT file in the EX_C sub-directory for more information about the examples.

4.5.1 Capture Analogue Input to Comma-Separated Variables (CSV) or Binary File

This example demonstrates timed capture of analogue input data to a comma-separated variable
(CSV) file, which may then be opened in a spreadsheet program such as Microsoft Excel. It also
supports capturing to a raw binary file. It runs on the PC26AT, PC27E, PC30AT, PCI230 and
PCI260 cards.

It allows the user to choose a supported card from a list, then asks a series of questions about the
capture progress. Default answers in square brackets can be selected by pressing the carriage
return key. All user input to the program is from standard input so answers to questions could be
provided by redirecting standard input from a file.

Once the user has set up the capture process, it is started and captured input data is converted to
ASCII CSV format and written to the output file, either as raw numbers from the driver or as voltage
values.

The example uses interrupts. See the README.TXT file in the EX_C sub-directory for more
details.

AMPDIO DRIVERS

Page 59

4.6 Visual Basic .NET Examples

The subdirectory EX_VBNET contains executables and source code for example programs written
in Microsoft Visual Basic .NET. In order to run the examples the Microsoft .NET Framework version
1.1 or later is required. If not already installed, a suitable version may be downloaded using the
Windows Update service or the Microsoft Download Center.

The project files (*.vbproj) have been created with Microsoft Visual Studio .NET 2003. If a later
version of Visual Studio is used, including the free “Express” edition of Visual Basic, the project
files can be automatically converted to use the later version when they are opened.

For developers, the Visual Basic .NET bindings for DIO_TC.DLL are in the DIO_TC.VB file.

4.6.1 Digital IO — InOut_VBNET.exe

The “IN OUT” example demonstrates basic Digital IO using the 82C55 peripheral port interface. It
runs on all supported Amplicon cards that have PPI resources, PC212E, PC214E, PC215E,
PC263, PC272E, PC30AT, PC36AT, PC36LP, PCI215, PCI230, PCI236, PCI263 and PCI272.

It allows the user to select PPI ports as inputs or outputs, set outputs high or low and monitor their
actual state.

It is equivalent to the Visual Basic 5.0 “INOUT” example.

It does not use interrupts.

4.6.2 Digital IO With Interrupts — DIO_EX_VBNET.exe and DIO_EX2_VBNET.exe

The “Extended DIO” example demonstrates sending buffers of information to the 82C55 PPI
interface under interrupt control. A strobe pattern is played out the PPI port. It runs on the PC212E,
PC214E, PC215E, PC30AT, PCI215 and PCI230 cards. It is equivalent to the Visual Basic 5.0
“DIO_EX” example.

It requires that the cards be installed with interrupts.

DIO_EX_VBNET.exe uses non-callback mode user interrupt functions like the Visual Basic 5.0
“DIO_EX” example. DIO_EX2_VBNET.exe uses “delegates” for user interrupt callback functions.

4.6.3 Voltmeter — Meter_VBNET.exe

The “Meter” example is a multi-channel voltage meter example. It runs on the PC26AT, PC27E,
PC30AT, PCI230 and PCI260 cards. Care must be taken to set up any card jumpers correctly.

Unlike the Visual Basic “METER” example, this one uses interrupts. It uses a “delegate” to set up
the user interrupt callback function.

4.7 Visual C# .NET Examples

The subdirectory EX_C# contains executables and source code for example programs written in
Microsoft Visual C# .NET. In order to run the examples the Microsoft .NET Framework version 1.1
or later is required. If not already installed, a suitable version may be downloaded using the
Windows Update service or the Microsoft Download Center.

AMPDIO DRIVERS

Page 60

The project files (*.csproj) have been created with Microsoft Visual Studio .NET 2003. If a later
version of Visual Studio is used, including the free “Express” edition of Visual C#, the project files
can be automatically converted to use the later version when they are opened.

For developers, the Visual C# .NET bindings for DIO_TC.DLL are in the Dioc_tc_h.CS file.

4.7.1 Digital IO — InOut_CSHARP.exe

The “IN OUT” example demonstrates basic Digital IO using the 82C55 peripheral port interface. It
runs on all supported Amplicon cards that have PPI resources, PC212E, PC214E, PC215E,
PC263, PC272E, PC30AT, PC36AT, PC36LP, PCI215, PCI230, PCI236, PCI263 and PCI272.

It allows the user to select PPI ports as inputs or outputs, set outputs high or low and monitor their
actual state.

It is equivalent to the Visual Basic 5.0 “INOUT” example.

It does not use interrupts.

4.7.2 Digital IO With Interrupts — DIO_EX_CSHARP.exe and DIO_EX2_CSHARP.exe

The “Extended DIO” example demonstrates sending buffers of information to the 82C55 PPI
interface under interrupt control. A strobe pattern is played out the PPI port. It runs on the PC212E,
PC214E, PC215E, PC30AT, PCI215 and PCI230 cards. It is equivalent to the Visual Basic 5.0
“DIO_EX” example.

It requires that the cards be installed with interrupts.

DIO_EX_CSHARP.exe uses non-callback mode user interrupt functions like the Visual Basic 5.0
“DIO_EX” example. DIO_EX2_CSHARP.exe uses “delegates” for user interrupt callback functions.

4.7.3 Voltmeter — Meter_CSHARP.exe

The “Meter” example is a multi-channel voltage meter example. It runs on the PC26AT, PC27E,
PC30AT, PCI230 and PCI260 cards. Care must be taken to set up any card jumpers correctly.

Unlike the Visual Basic “METER” example, this one uses interrupts. It uses a “delegate” to set up
the user interrupt callback function.

4.8 DIO_TC.DLL Source Code

The DIO_CODE sub directory contains the full C source code and documentation for the
application interface library (DIO_TC.DLL).

The Windows Dynamic Link Library (DLL) contains over 50 functions and provides a common
Applications Program Interface (API) to the supported boards. The library functions allow the
boards to be easily applied to many different applications, and provide an easy way of accessing
the board's features. The DLL can be called by any language that uses Windows calling
conventions.

The library can be built in Microsoft Visual C++ version 4.0 or later using DIO_TC.MDP, with
Microsoft Visual C++ version 6.0 or later using DIO_TC.DSW, with Microsoft Visual Studio 2005 or
later using DIO_TC.vcproj, or with Borland C version 4.2 using DIO_TC.IDE.

AMPDIO DRIVERS

Page 61

The DIO_TC.vcproj file can also be used to build DIO_TC.DLL using the free Microsoft Visual C++
2005 “Express” edition, but it will also be necessary to obtain and install “Microsoft Platform SDK”
and configure the directories in the “Projects and Solutions” section in the “Options” dialog in Visual
C++ Express. In that section the following paths should be added to the appropriate subsections:

 Executable files: C:\Program Files\Microsoft SDK\Bin
 Include files: C:\Program Files\Microsoft SDK\include
 Library files: C:\Program Files\Microsoft SDK\Lib

(The above paths need to be changed if the Platform SDK has been installed somewhere else.)
These options are global, not part of a specific project, so they only need to be configured once.

For AMPDIO versions up to 4.46, the DIO_TC.DLL file is built in the “Release” or “Debug”
subdirectory (according to the selected build configuration), along with the DLL export library,
DIO_TC.LIB. For AMPDIO version 5.00, these have been changed to “Win32\Release” and
“Win32\Debug” for the 32-bit version of DIO_TC.DLL, with the x64 version being built in
“x64\Release” or “x64\Debug”. The examples in the “EX_C\” directory expect to find DIO_TC.LIB in
the “DIO_CODE\” directory (“DIO_CODE\Win32” or “DIO_CODE\x64” for AMPDIO v5.00 and
later), so it will be necessary to copy the file there from the “Release” or “Debug” subdirectory if
significant changes have been made. The newly built DIO_TC.DLL should be copied to the correct
Windows system directory. For Windows 95, 98 or ME, this is the “system” directory. For Windows
NT, Windows 2000 and 32-bit versions of Windows XP, Windows Vista, Windows 7 and Windows
Server 2003, this is the “system32” directory. For “x64” editions of Windows XP, Windows Vista,
Windows 7, Windows Server 2003 and Windows Server 2008, the “x64” build of DIO_TC.DLL goes
in the “system32” directory and the 32-bit “Win32” build of DIO_TC.DLL goes in the “SysWoW64”
directory (this may seem the opposite of what one might expect!).

Up to AMPDIO v4.46, the shipped version of DIO_TC.DLL and DIO_TC.LIB were built with
Microsoft Visual C++ 4.2. From AMPDIO v5.00 onwards, the shipped “Win32” version of
DIO_TC.DLL was built with Microsoft Visual C++ 6.0, but the corresponding DIO_TC.LIB was still
built with Visual C++ 4.2 for backwards compatibility. The shipped “x64” versions of DIO_TC.DLL
and DIO_TC.LIB were built with Microsoft Visual Studio 2005.

The “Readme.TXT” file in the “DIO_CODE\” directory describes changes made in each version of
DIO_TC.DLL and describes each function in the DLL. The function descriptions are also in section
6.4 of this document.

The ADIOCTL.RTF file documents the low-level IOCTL interface to the driver. Under most
circumstances, it is recommended that the more user-friendly DLL interface be used.

4.9 SYS_DLLS

This directory contains Microsoft Visual Basic and Visual C system DLLs that may be required to
run the examples. Under normal circumstances, these DLLs will have already been installed onto
your system. If you experience difficulties running the examples, follow the instructions in the
‘README_DLL.TXT’ file found in the ‘SYS_DLLS’ directory.

For AMPDIO v5.00 and later, the required system DLLs and other run-time files needed to run the
example programs are automatically installed, so the SYS_DLLS directory is no longer installed.

AMPDIO DRIVERS

Page 62

5 STRUCTURE AND ASSIGNMENTS OF THE REGISTERS

In order to gain the maximum out of the ADIO driver it is useful to have an appreciation of the
underlying register locations. The driver was originally developed for the series 200 DIO cards and
the register structure used on those cards forms the fundamental basis of the driver architecture.

5.1 Register Assignments on Series 200 DIO Cards

The series 200 registers occupy 32 consecutive address locations in the I/O space. A table
summarising the register assignments is shown in section 5.3. Please note that the actual register
address is the base address configured on the board plus the register offset given in the table.

5.2 Register Grouping

All the DIO boards in the 200 series, PC212E, PC214E, PC215E, PC218E, PC272E, PCI215 and
PCI272 series have the same register map, which is split up into five groups. Other supported
cards are fit into the same grouping scheme as far as possible.

5.2.1 Cluster X, Y and Z Groups

Each of the Cluster X, Y and Z groups is populated with either an 82C55 Programmable Peripheral
Interface (PPI) device to provide digital input/output, or two 82C54 Counter/Timer devices. Each of
the boards in the range deploys various combinations of these devices. The analogue I/O cards
still support this idea, but other resources can be found in the X,Y, Z groups.

5.2.2 Counter Connection Register Group

The Counter Connection Register (CT) group is supported by the PC212E, PC215E, PC218E and
PCI215 series 200 boards and the PCI230, PCI260, PCI224, PCI234 PCI analogue I/O cards.
These registers provide software-programmable clock and gate connections for the on-board
counter/timer groups. Other supported cards allow selection of the timer/counter clock source by
means of jumpers, and do not provide gate source selection.

5.2.3 Interrupts Group

Most of the supported cards have an interrupt enable (IE) register. This register provides
programmable interrupt source selection and interrupt status information. On cards which do not
have an interrupt enable/ interrupt status register, only one interrupt source should be used at a
time. Sometimes the interrupt source is selected by means of a jumper on these cards.

5.3 The Drivers View of The Register Layout

The driver divides the I/O space into 8 I/O blocks; the first 6 blocks can be 82C54 counter timers
(CT) or 82C55 programmable peripheral interfaces (PPI) or analogue I/O or empty, depending on
which card is installed. The next block is the counter timer clock and gate connection block and the
last is the interrupt enable block.

Most cards fit into this generalised I/O structure, but some cards do not support the counter timer
clock and gate connection block, or the interrupt enable block.

AMPDIO DRIVERS

Page 63

Each CT or PPI I/O block contains 4 ports, 3 data ports and a control port. When writing to data
registers, the port number can be set between 0 and 3. A PPI block is usually followed by an empty
block.

Up to six individually programmable interrupt sources can be assigned to the cards interrupt using
the Interrupt Enable (IE) registers. The precise interrupts sources available are card specific and
are detailed in the card’s manual.

ADDRESS
OFFSET

IO
Block

PC218E PC212E PC215E PC214E PC272E

0016 – 0316 0 (X1) CT PPI PPI PPI PPI

0416 – 0716 1 (X2) CT

0816 – 0B16 2 (Y1) CT CT PPI PPI PPI

0C16 – 0F16 3 (Y2) CT CT

1016 – 1316 4 (Z1) CT CT CT CT PPI

1416 – 1716 5 (Z2) CT CT CT

1816 – 1D16 6 CT
Connect

CT
Connect

CT
Connect

Unused Unused

1E16 7 IE IE IE Unused IE

1F16 Unused Unused Unused Unused Unused

The version 2.00 (and above) driver also supports the following card types:

ADDRESS

OFFSET

IO
Block

PC36AT PC263

0016 – 0316 0 (X1) PPI 16 relay

0416 – 0716 1 (X2)

0816 – 0B16 2 (Y1)

0C16 – 0F16 3 (Y2)

1016 – 1316 4 (Z1)

1416 – 1716 5 (Z2)

1816 – 1D16 6

1E16 7

1F16

The version 4.00 (and above) driver also supports the following card types:

ADDRESS

OFFSET

IO
Block

PC24/

PC25

PC27 PC30AT PC26AT

0016 – 0316 0 (X1) 2 DACs ADC ADC ADC

0416 – 0716 1 (X2) 2 DACs CT CT CT

0816 – 0B16 2 (Y1) CT PPI

0C16 – 0F16 3 (Y2) DAC

1016 – 1316 4 (Z1) DAC

1416 – 1716 5 (Z2)

1816 – 1D16 6

1E16 7

1F16

AMPDIO DRIVERS

Page 64

The blocks marked ‘2 DACs’ consist of a pair of D-to-A converters. The blocks marked ‘DAC’
consist of a single D-to-A converter. The blocks marked ‘ADC’ consist of a multiplexed A-to-D
converter.

The version 4.10 (and above) driver also supports the following PCI card types:

ADDRESS

OFFSET

IO
Block

PCI230 PCI260

0016 – 0316 0 (X1) PPI

0416 – 0716 1 (X2)

0816 – 0B16 2 (Y1) ADC ADC

0C16 – 0F16 3 (Y2)

1016 – 1316 4 (Z1)

1416 – 1716 5 (Z2) CT CT

1816 – 1D16 6 CT
Connect

CT
Connect

1E16 7 IE IE

1F16 Unused Unused

The blocks marked ‘ADC’ on these PCI cards are just placeholders for the interrupt source. The
actual registers are not mapped into this area. The PCI230 also has two DAC channels, but the
registers are not mapped into this area. See the PCI230/PCI260 manual for full details of the
registers.

The version 4.20 (and above) driver also supports the following PCI card types:

ADDRESS

OFFSET

IO
Block

PCI224 PCI234

0016 – 0316 0 (X1) EXT EXT

0416 – 0716 1 (X2)

0816 – 0B16 2 (Y1) DACS DACS

0C16 – 0F16 3 (Y2)

1016 – 1316 4 (Z1)

1416 – 1716 5 (Z2) CT CT

1816 – 1D16 6 CT
Control

CT
Control

1E16 7 IE IE

1F16 Unused Unused

The blocks marked ‘DACS’ on these PCI cards are just placeholders for the interrupt source. The
actual registers are not mapped into this area. The PCI224 has 16 multiplexed 12-bit DAC
channels. The PCI234 has 4 multiplexed 16-bit DAC channels. See the PCI224/PCI234 manual for
full details of the registers.

Similarly, the blocks marked ‘EXT’ on these PCI cards are just placeholders for an externally
triggered interrupt source.

AMPDIO DRIVERS

Page 65

The version 4.31 (and above) driver also supports the following PCI card types:

ADDRESS
OFFSET

IO
Block

PCI215 PCI236 PCI272 PCI263

0016 – 0316 0 (X1) PPI PPI PPI 16 relay

0416 – 0716 1 (X2)

0816 – 0B16 2 (Y1) PPI PPI

0C16 – 0F16 3 (Y2)

1016 – 1316 4 (Z1) CT PPI

1416 – 1716 5 (Z2) CT

1816 – 1D16 6 CT
Connect

 Unused

1E16 7 IE IE

1F16 Unused Unused

The PCI215, PCI272 and PCI263 are the PCI equivalents of the PC215E and PC272E and PC263
respectively. The PCI236 is the PCI equivalent of the PC36AT.

5.4 The Register Details

5.4.1 82C55 Programmable Peripheral Interface Registers

The following paragraphs describe the operations of the 82C55 Programmable Peripheral
Interface, which is a common element on many of the supported cards. Full details may be found in
the ‘App82c55.pdf’ file in the ‘manual’ sub-directory of the SOFTMAN CD.

Each programmable peripheral interface has the following register configuration. Offsets are from
the start of the PPI block:

Port Offset Description Access Bits

0016 PPI Port A R/W 8

0116 PPI Port B R/W 8

0216 PPI Port C R/W 8

0316 PPI Control W 8

5.4.1.1 82C55 Programmable Peripheral Interface PPI Data Register Port A

This eight-bit register writes to and reads from port A of the 82C55 Programmable Peripheral
Interface PPI.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

001

6
Write and Read 8 bits 82C55 Programmable

Peripheral Interface Port A
Data Register

PPI A

FUNCTION

The PPI Port A Data Register is used to write or read 8 bit data to port A of the 82C55
Programmable Peripheral Interface device PPI.

AMPDIO DRIVERS

Page 66

The PPI can be configured to operate in several modes. Further details may be found by reference
to the device manufacturer’s 82C55 data sheets in the appendices on the SOFTMAN CD.

The eight data bits of port A are data input, data output or bi-directional data I/O according to the
PPI mode:

Mode 0 Input or Output
Mode 1 Input or Output
Mode 2 Bi-directional Input/output

BIT ASSIGNMENTS

The bit layout of the PPI-X Port A data register is shown below.

7 6 5 4 3 2 1 0

PPI-X Port A Digital
I/O Data Bits

SK1 3
SK1 61
SK1 22
SK1 41
SK1 2
SK1 60
SK1 21
SK1 40

Digital I/O SK1
Pin Connections

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

5.4.1.2 82C55 Programmable Peripheral Interface PPI Data Register Port B

This eight-bit register writes to and reads from port B of the 82C55 Programmable Peripheral
Interface PPI.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

0116 Write and Read 8 bits 82C55 Programmable
Peripheral Interface Port B

Data Register

PPI B

FUNCTION

The PPI Port B Data Register is used to write or read 8 bit data to a port of the 82C55
Programmable Peripheral Interface device.

The PPI can be configured to operate in several modes. Further details may be found by reference
to the device manufacturer's 82C55 data sheets in the appendices on the SOFTMAN CD.

The eight data bits of port B are data input or data output in all modes

AMPDIO DRIVERS

Page 67

BIT ASSIGNMENTS

The bit layout of the PPI-X port B data register is shown below.

7 6 5 4 3 2 1 0

PPI-X Port B Digital
I/O Data Bits

SK1 46
SK1 7
SK1 65
SK1 26
SK1 45
SK1 6
SK1 64
SK1 25

Digital I/O SK1
Pin Connections

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

5.4.1.3 82C55 Programmable Peripheral Interface PPI Data Register Port C

This eight-bit register writes to and reads from port C of the 82C55 Programmable Peripheral
Interface PPI.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

0216 Write and Read 8 bits 82C55 Programmable
Peripheral Interface Port C

Data Register

PPI C

FUNCTION

The PPI Port C Data Register is used to write or read 8 bit data to a port of the 82C55
Programmable Peripheral Interface device

The PPI can be configured to operate in several modes. Further details may be found by reference
to the device manufacturer's 82C55 data sheets in the appendices on the SOFTMAN CD.

The eight data bits of port C are split into two groups, the upper port C bits 4 to 7 and the lower port
C bits 0 to 3. These bits can be data input, data output or control/handshake lines according to the
PPI mode:

Mode Port C Upper Port C Lower
Mode 0 Input or Output Input or Output
Mode 1 Control/Data Control/Data
Mode 2 5 bit Control (PC3 to PC7) 3 bit Control/Data (PC0 to PC2)

With bit 7 'Command Select' set to '0', any of the eight bits of port C can be set or reset using a
single output instruction. When port C is being used as status/control for port A or port B, these bits
can be set or reset using the Bit Set/Reset operation just as if they were data output ports.

A full description of the operating modes and all other features of the 82C55 are available in the
manufacturer’s data sheet for the 82C55, available on the SOFTMAN CD.

AMPDIO DRIVERS

Page 68

BIT ASSIGNMENTS

The bit layout of the PPI-X port C data register is shown below.

7 6 5 4 3 2 1 0
PPI-X Port C
Upper Nybble

Data Bits

SK1 44
SK1 5
SK1 63
SK1 24
SK1 4
SK1 62
SK1 23
SK1 42

Digital I/O SK1
Pin Connections

PC4
PC5
PC6
PC7

PPI-X Port C
Lower Nybble

Data Bits

PC0
PC1
PC2
PC3

5.4.1.4 82C55 Programmable Peripheral Interface PPI Command Register

This is the command register for the PPI and can be used to set the operational mode of the three
digital I/O ports or to manipulate the bits of port C.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

0316 Write 8 bits 82C55 Programmable
Peripheral Interface PPI

Command Register

PPI CMD

FUNCTION

Provides a command word to define the operation of the PPI ports A, B and C. Any port
programmed as output is initialized to all zeroes when a command word is written. A separate
feature allows any bit of port C to be set or reset using a single instruction.

The programming procedure for the 82C55 is flexible, but the command word must be written
before data bytes are loaded. As the command register and each port have separate addresses
(offsets 0 to 3) and each command word specifies the mode of each port, no other special
instruction sequence is required.

The Three Modes

The register function depends on the setting of bit 7 'Command Select' and the three mode
selections assume that bit 7 is set to '1', which allows mode configuration.

Mode 0 provides basic input and output operations through each of the ports A, B and C. Output
data bits are latched and input data follows the signals applied to the I/O lines. No handshaking is
needed.

 16 different configurations in mode 0
 Two 8 bit ports and two 4 bit ports
 Inputs are not latched
 Outputs are latched

Mode 1 provides strobed input and output operations with data transferred through port A or B and
handshaking through port C.

AMPDIO DRIVERS

Page 69

 Two I/O groups (Group A — also known as Group 0 or Group I)
(Group B — also known as Group 1 or Group II)

 Both groups contain an 8 bit port and a 4 bit control/data port
 Both 8 bit data ports can be latched input or latched output

Mode 2 provides strobed bi-directional operation using port A as the bi-directional data bus. Port
C3 to C7 bits are used for interrupts and handshaking bus flow control similar to mode 1. NOTE:
Port B and port C0 to C2 bits may be defined as mode 0 or 1, input or output in conjunction with
port A in mode 2.

 An 8 bit latched bi-directional bus port and 5 bit control port
 Both input and outputs are latched
 An additional 8 bit input or output port with a 3 bit control port

Single Bit Set/Reset Feature

With bit 7 'Command Select' set to '0', any of the eight bits of port C can be set or reset using a
single output instruction. This feature reduces the software overhead in control based applications.
When port C is being used as status/control for port A or port B, these bits can be set or reset
using the Bit Set/Reset operation just as if they were data output ports.

BIT ASSIGNMENTS

Bit layouts of the PPI command word register is shown below.

Command Word for Mode Definition Format

0 1 2 3 4 5 6 7

1 = I/O Mode

Group B
Port C (Lower)
1 = Input
0 = Output
Port B
1 = Input
0 = Output
Mode Selection
0 = Mode 0
1 = Mode 1

Group A
Port C (Upper)
1 = Input
0 = Output
Port A
1 = Input
0 = Output
Mode Selection
00 = Mode 0
01 = Mode 1
1X = Mode 2

AMPDIO DRIVERS

Page 70

Command Word for Bit Set/Reset Format

5.4.2 82C54Counter Timer Registers

The following paragraphs describe the operations of the 82C54 counter timer that is a common
element on many of the supported cards. Each 82C54 has three counter timer channels. Full
details may be found in the device manufacturer’s data sheet in the file ‘App82c54.pdf’ file in the
‘manual’ sub-directory of the SOFTMAN CD.

Note that the supported ISA analogue cards (PC24E/PC25E, PC26AT, PC27E and PC30AT) use
the similar, but slightly less functional 82C53 counter timer. Most of the details below also apply to
the 82C53, full details of which may be found in the ‘App82c53.pdf’ file in the ‘manual’ sub-directory
of the SOFTMAN CD. The Read Back command which the driver performs before reading counter
timer values is only supported by the 82C54 and does not work on the 82C53, so that the values
read back will be unreliable. The counter timers on the cards which use the 82C53 are only
intended to be used for frequency generation, so this is not much of a problem.

Version 4.23 and later uses the Counter Latch command on the 82C53 to latch a single counter
value at a time instead of the unsupported Read Back command which can latch 2 or 3 counter
values at a time on the 82C54. This allows the counter timer values on cards that use the 82C53 to
be read back more reliably.

Each counter timer has the following register configuration. Offsets are from the start of the counter
timer block:

Port Offset Description Access Bits

0016 Counter Timer 0 Data register R/W 8

0116 Counter Timer 1 Data register R/W 8

0216 Counter Timer 2 Data register R/W 8

0316 Counter Timer Control register W 8

5.4.2.1 82C54 Counter 0 Data Register

The 82C54 Programmable Timer Counter provides three 16 bit counter/timers which can be
independently programmed to operate in any one of six modes with BCD or Binary count functions.

The register definition for Counter 0 Data is as follows.

0 1 2 3 4 5 6 7

0 = Bit Set/Reset

X X X
Don’t Care

Bit Set/Reset
0 = Reset
1 = Set

Port C Bit Select

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1 B0
0 0 1 1 0 0 1 1 B1
0 0 0 0 1 1 1 1 B2

AMPDIO DRIVERS

Page 71

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

0016 Write and Read 8 bits
82C54 Counter/Timer

Counter 0 Data Register
CT0

FUNCTION

The Counter 0 Data Register is used to write and read 8 bit data to the 82C54 counter/timer 0. The
counter is normally configured for 16 bit operation and to ensure validity of the data it is important
to always write/read two bytes to the register, least significant byte first. Please note that the 16-bit
count values written to this register are not latched into the counting element until the next clock
pulse (assuming the gate input is high). Subsequent read operations from this register will
therefore not reflect the new count value until this clock pulse has latched the data.

This register is also used to read counter 0 status if the status has been latched using the Read-
Back command (not supported on 82C53).

The counter can be configured to operate in several modes. Further details may be found by
reference to the device manufacturer's 82C54 (or 82C53) data sheets.

BIT ASSIGNMENTS

The bit layout of the counter 0 register is shown below.

7 6 5 4 3 2 1 0

First Byte
(Least Significant)

8
9
10
11
12
13
14
15

Second Byte
(Most Significant)

0
1
2
3
4
5
6
7

16 BIT COUNTER 0 DATA BIT

5.4.2.2 82C54 Counter 1 Data Register

The 82C54 Programmable Timer Counter provides three 16 bit counter/timers which can be
independently programmed to operate in any one of six modes with BCD or Binary count functions.
The register definition for Counter 1 Data is as follows.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

0116 Write and Read 8 bits
82C54 Counter/Timer

Counter 1 Data Register
CT1

FUNCTION

The Counter 1 Data Register is used to write and read 8 bit data to the 82C54 counter/timer 1. The
counter is normally configured for 16 bit operation and to ensure validity of the data it is important
to always write/read two bytes to the register, least significant byte first. Please note that the 16-bit
count values written to this register are not latched into the counting element until the next clock
pulse (assuming the gate input is high). Subsequent read operations from this register will
therefore not reflect the new count value until this clock pulse has latched the data.

AMPDIO DRIVERS

Page 72

This register is also used to read counter 1 status if the status has been latched using the Read-
Back command (not supported on 82C53).

The counter can be configured to operate in several modes. Further details may be found by
reference to the device manufacturer's 82C54 (or 82C53) data sheets.

BIT ASSIGNMENTS

The bit layout of the counter 1 register is shown below.

7 6 5 4 3 2 1 0

First Byte
(Least Significant)

8
9
10
11
12
13
14
15

Second Byte
(Most Significant)

0
1
2
3
4
5
6
7

16 BIT COUNTER 1 DATA BIT

5.4.2.3 Counter 2 Data Register

The 82C54 Programmable Timer Counter provides three 16 bit counter/timers which can be
independently programmed to operate in any one of six modes with BCD or Binary count functions.
The register definition for Counter 2 Data is as follows.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

0216 Write and Read 8 bits
82C54 Counter/Timer

Counter 2 Data Register
CT2

FUNCTION

The Counter 2 Data Register is used to write and read 8 bit data to the 82C54 counter/timer 2. The
counter is normally configured for 16 bit operation and to ensure validity of the data it is important
to always write/read two bytes to the register, least significant byte first. Please note that the 16-bit
count values written to this register are not latched into the counting element until the next clock
pulse (assuming the gate input is high). Subsequent read operations from this register will
therefore not reflect the new count value until this clock pulse has latched the data.

This register is also used to read counter 2 status if the status has been latched using the Read-
Back command (not supported on 82C53).

The counter can be configured to operate in several modes. Further details may be found by
reference to the device manufacturer's 82C54 (or 82C53) data sheets.

AMPDIO DRIVERS

Page 73

BIT ASSIGNMENTS

The bit layout of the counter 2 register is shown below.

7 6 5 4 3 2 1 0

First Byte
(Least Significant)

8
9
10
11
12
13
14
15

Second Byte
(Most Significant)

0
1
2
3
4
5
6
7

16 BIT COUNTER 2 DATA BIT

5.4.2.4 Counter/Timer Control Register

The control register provides the means to configure the three sixteen bit counter/timers of the
82C54. An outline of its operation is given here, but reference should be made to the 82C54 device
manufacturers’ data sheets in the appendices on the SOFTMAN CD before programming of the
counter is attempted.

The Counter Timer Control register is a WRITE register.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

0316 Write 8 bits
82C54 Counter/Timer

Control Register
CTC

FUNCTION

The Counter Timer Control register is used to define the operation of the counters 0, 1 and 2, and
to latch counter values and/or status of one or more counters.

The programming procedure for the 82C54 is flexible, but the following two conventions must be
followed:

 For each counter, the control word must be written before the initial count is loaded.
 The initial count must follow the count format specified in the control word. This format is

normally least significant byte followed by most significant byte (control word bits 5 & 4 = 1 & 1)
but can be L.S. byte only or M.S. byte only.

As the control register and each counter have separate addresses (offsets 0, 1, 2 and 3) and each
control word specifies the counter it applies to (bits 6 and 7) no special instruction sequence is
required.

When a control word is written to a counter, all control logic is reset and OUT goes to a known
initial state depending on the mode selected.

The six counter modes are:

Mode 0 Interrupt on Terminal Count
Mode 1 Hardware Re-triggerable One-shot
Mode 2 Rate Generator
Mode 3 Square Wave

AMPDIO DRIVERS

Page 74

Mode 4 Software Triggered Mode
Mode 5 Hardware Triggered Strobe (Re-triggerable)

BIT ASSIGNMENTS

The bit layout of the counter timer control register is shown below.

D7 D6 D5 D4 D3 D2 D1 D0
SC1 SC0 RW1 RW0 M2 M1 M0 BCD

SC – Select Counter

SC1 SC0
0 0 Select Counter 0
0 1 Select Counter 1
1 0 Select Counter 2
1 1 Read-Back Command (See Below)

RW – Read/Write

RW1 RW0
0 0 Counter Latch Command (See Below)
0 1 Read/Write least significant byte only.
1 0 Read/Write most significant byte only.
1 1 Read/Write least significant byte first, then most significant byte.

M – Mode

M2 M1 M0
0 0 0 Mode 0
0 0 1 Mode 1
X 1 0 Mode 2
X 1 1 Mode 3
1 0 0 Mode 4
1 0 1 Mode 5

BCD – Binary Coded Decimal

0 Binary Counter 16-bits
1 Binary Coded Decimal (BCD) Counter (4 Decades)

The format of the Counter Latch Command and Read-Back Command are shown below.

Counter Latch Command

D7 D6 D5 D4 D3 D2 D1 D0
SC1 SC0 0 0 X X X X

SC1, SC0 specify counter to be latched:

SC1 SC0 COUNTER
0 0 0
0 1 1
1 0 2
1 1 Read-Back Command

AMPDIO DRIVERS

Page 75

Read-Back Command

D7 D6 D5 D4 D3 D2 D1 D0
1 1 /COUNT /STATUS CNT2 CNT1 CNT0 0

D5: 0 = Latch count of selected Counter(s)
D4 0 = Latch status of selected Counter(s)
D3 1 = Select Counter 2
D4 1 = Select Counter 1
D5 1 = Select Counter 0

N.B. The Read-Back Command is not supported by the 82C53. Prior to AMPDIO v4.23, The driver
uses the Read-Back Command to latch counters, so reading counters is not reliable on those
cards which use the 82C53.

Latching the count of selected channels with the Read-Back Command has the same effect as the
Counter Latch Command on those channels.

If the status of a counter is latched, the next read from that counter’s register will read and unlatch
the status. Otherwise, if the count of a channel is latched, the next 1 or 2 reads from that counter’s
register (depending on the Read/Write configuration) will read 1 or 2 halves of the counter value
and unlatch the count.

The counter status format is shown below.

D7 D6 D5 D4 D3 D2 D1 D0
OUTPUT NULL

COUNT
RW1 RW0 M2 M1 M0 BCD

D7 1 = OUT pin is 1
 0 = OUT pin is 0
D6 1 = Null count
 0 = Count available for reading
D5–D0 Counter programmed mode

Further information on programming the 82C54 Programmable Counter/Timer can be found in
chapters 5 and 2. For a full description of the six operating modes and all other features of the
82C54, see the manufacturer's data sheet for the 82C54 in the appendices on the SOFTMAN CD.

5.4.3 Clock and Gate Configuration Registers

Clock and counter timer connection registers have the following configuration. Offsets are from the
start of the CT Control block in the register map (1816 on all supported cards):

Port Offset Description Access Bits

0016 Clock Connections for group X timers W 8

0116 Clock Connections for group Y timers W 8

0216 Clock Connections for group Z timers W 8

0316 Gate Connections for group X timers W 8

0416 Gate Connections for group Y timers W 8

0516 Gate Connections for group Z timers W 8

AMPDIO DRIVERS

Page 76

5.4.3.1 Group Clock Connection Registers

These registers can be used to select the counter/timer clock sources.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

0016 Write 8 bits
Group X Counter/timer

Clock Selection Register
XCLK_SCE

0116 Write 8 bits
Group Y Counter/timer

Clock Selection Register
YCLK_SCE

0216 Write 8 bits
Group Z Counter/timer

Clock Selection Register
ZCLK_SCE

FUNCTION

Individually selects one of the eight possible Counter/Timer clock sources for each counter/timer
channel.

The Eight Clock Sources

The eight possible clock sources are as follows:

1. The counter/timer’s CLK input from the SK1 connector
2. The internal 10 MHz clock
3. The internal 1 MHz clock
4. The internal 100 kHz clock
5. The internal 10 kHz clock
6. The internal 1 kHz clock
7. The output of the preceding counter/timer channel (OUT n–1)
8. The dedicated external clock input for the group (X1/X2, Y1/Y2 or Z1/Z2)

N.B. The preceding counter/timer channel for channel 0 on a particular counter/timer chip is
channel 2 of the preceding counter/timer chip. The highest counter/timer chip is considered to
precede the lowest counter/timer chip for this purpose. For example, on the PC215E, which has
two counter/timer chips, Z1 and Z2, the OUT n–1 clock source for Z2 channel 0 comes from the
output of Z1 channel 2, and the OUT n–1 clock source for Z1 channel 0 comes from the output of
Z2 channel 2.

AMPDIO DRIVERS

Page 77

BIT ASSIGNMENTS

Bit layout of each clock connection register is shown below.

5.4.3.2 Group Gate Connection Registers

These registers can be used to select the counter/timer gate input sources for each counter/timer
channel.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

0316 Write 8 bits
Group X Counter/timer Gate

Selection Register
XGAT_SCE

0416 Write 8 bits
Group Y Counter/timer Gate

Selection Register
YGAT_SCE

0516 Write 8 bits
Group Z Counter/timer Gate

Selection Register
ZGAT_SCE

FUNCTION

Individually selects one of the four possible Counter/Timer gate input signal sources for each
counter/timer channel.

The Four Gate Sources

The four1 possible gate sources are as follows:

1. VCC (internal +5V d.c.) — i.e. gate permanently enabled
2. GND (internal 0V d.c.) — i.e. gate permanently disabled
3. GAT n — the counter/timer’s GAT input from the SK1 connector
4. /OUT n–2 — the inverted output of counter timer n–2

N.B. The n–2 channel for channel 0 on a particular counter/timer chip is channel 1 of the preceding
counter/timer chip, and the n–2 channel for channel 1 on a particular counter/timer chip is channel
2 of the preceding counter/timer chip. The highest counter/timer chip is considered to precede the
lowest counter/timer chip for this purpose. For example, on the PC215E, which has two
counter/timer chips, Z1 and Z2, the /OUT n–2 gate source for Z2 channel 0 comes from the output

1 Some cards support up to four additional gate sources.

0 1 2 3 4 5 6 7

bit 2 bit 1 bit 0 Clock Source

0 0 0 CLK n
0 0 1 10 MHz
0 1 0 1 MHz
0 1 1 100 kHz
1 0 0 10 kHz
1 0 1 1 kHz
1 1 0 OUT n–1
1 1 1 Ext Clock

bit 4 bit 3 Counter/Timer

0 0 Counter 0
0 1 Counter 1
1 0 Counter 2
1 1 Reserved

bit 5 Counter/Timer Device

0 X1/Y1/Z1
1 X2/Y2/Z2

bit 7 bit 6

X X Reserved

AMPDIO DRIVERS

Page 78

of Z1 channel 1, and the /OUT n–2 gate source for Z1 channel 0 comes from the output of Z2
channel 1.

For the PCI230 and PCI230+, the Z2 counter/timer’s GAT inputs are connected internally to PPI-X
C0, C1 and C2. For the PCI260+, all three counter/timer GAT inputs are connected internally to the
external trigger input (SK1 pin 17). For the original PCI260, PCI224 and PCI234, the GAT input is
not connected.

BIT ASSIGNMENTS

Bit layout of each gate connection register is shown below.

Additional Gate Sources for PCI230+ and PCI260+

The PCI230+ and PCI260+ cards support the following additional gate sources:

1. Latched GAT n — starts low and goes high on rising edge of timer/counter’s GAT input
2. Latched /GAT n — starts low and goes high on falling edge on timer/counter’s GAT input
3. /GAT n — inverted timer/counter’s GAT input
4. OUT n–2 — the non-inverted output of counter timer n–2

0 1 2 3 4 5 6 7

bit 2 bit 1 bit 0 Gate Source

0 0 0 VCC
0 0 1 GND
0 1 0 GAT n
0 1 1 /OUT n–2
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Reserved
1 1 1 Reserved

bit 4 bit 3 Counter/Timer

0 0 Counter 0
0 1 Counter 1
1 0 Counter 2
1 1 Reserved

bit 5 Counter/Timer Device

0 X1/Y1/Z1
1 X2/Y2/Z2

bit 7 bit 6

X X Reserved

bit 2 bit 1 bit 0 Gate Source

0 0 0 VCC
0 0 1 GND
0 1 0 GAT n
0 1 1 /OUT n–2
1 0 0 Latched GAT n
1 0 1 Latched /GAT n
1 1 0 /GAT n
1 1 1 OUT n-2

AMPDIO DRIVERS

Page 79

6 PROGRAMMING WITH THE AMPDIO DRIVER

6.1 Windows DLL and Examples

The AMPDIO DIO_TC DLL is a Windows programmer's interface to the analogue and digital IO
boards. As long as the compiler/interpreter supports Windows, i.e. uses the Windows calling
conventions; all the functions can be called by software written in any language.

The application interface to the driver is defined in a number of header files, for use by different
languages.

Module definition file Language
DIO_TC.H and ADIOCTL.H Microsoft C/C++ versions 4.x upwards

Borland C/C++ versions 4.x and 5.x
DIO_TC.BAS Microsoft Visual Basic version 5.0
DIO_TC.VB Microsoft Visual Basic .NET
DIO_TC_H.CS Microsoft Visual C# .NET
DIO_TC.PAS Borland Delphi version 3.0
DIO_VEE.H HP VEE version 4.0

For other languages, the user will need to compile a suitable header, in which the DLL functions
and constants are declared, using DIO_TC.H as an example. For C programming, some useful
macros for constant values may be found in ADIOCTL.H. For Visual Basic, these constants are in
the DIO_TC.BAS file. For Delphi programming, they are in the DIO_TC.PAS file.

6.2 Support in DOS

The support in DOS is limited to the DOS software supplied separately with individual cards and
this is documented in the card manuals. Note, for PCI cards no DOS software is shipped, however
a FINDCARD utility is supplied to enable users to develop their own DOS software for these cards.
The FINDCARD utility does function under a Windows environment.

The FINDCARD utility will find any installed Amplicon PCI cards and report the plug and play
resource allocation. With this information DOS applications can be written for the cards in
languages such as Turbo Pascal and Microsoft C.

FINDCARD

Card #1 = PCI230 Int = $0B Port 1 = $DC00 Port2 = $E00

Where:

Int is the assigned interrupt.
Port1 is the 8-bit register IO space.
Port2 is the 16-bit register IO space.

Please check MEV’s web site for up to date DOS PCI Plug and Play libraries and utilities.

6.2.1 Windows Library Source Code

The application interface library ‘DIO_TC.DLL’ is supplied in both executable form and as ‘C’
source code. The source code can be compiled using Microsoft C/C++ compiler version 4.0 or
greater or Borland C++ version 4.0 compiler. The project workspace DIO_TC.MDP, DIO_TC.DSW

AMPDIO DRIVERS

Page 80

or DIO_TC.vcproj is used to build the DLL using Microsoft Visual C/C++ DIO_TC.IDE is used for
Borland C++.

6.3 Using the Dynamic Link Library

6.3.1 C/C++

Section 6.4 describes the library functions available. Please note that in C/C++, the function call
examples given should always end with a semi-colon. Where arguments to functions are described
as pointers, the address of a user-declared variable is required. This is easily done by using the '&'
reference operator. For example, function TCgetCount requires a pointer to a variable declared as
long, into which the count value result will be placed. A typical 'C' code example for displaying the
Z1 Counter 0 count value would be as follows:

long count; // declare count as long

TCgetCount(h, Z1, 0, &count); // pass count by reference
printf("count = %ld", count); // count now contains new
 // value

where h is a handle to a registered board. N.B. The large memory model should be used when
compiling the library and example programs.

6.3.1.1 Microsoft C/C++

1) Ensure that the library DIO_TC.LIB and the header files DIO_TC.H and ADIOCTL.H can be
located by the compiler, either in the project directory or in a path added to the include/library
directory paths. Failure to find these files may cause ‘unresolved external’ compilation errors.
Note that the location of the preinstalled DIO_TC.LIB file changed in AMPDIO v5.00.

2) At the beginning of the application program, add the following lines:

#include <windows.h>
#include "DIO_TC.H"
#include "ADIOCTL.H"

3) Add the library link file DIO_TC.LIB into the project workspace.

4) Build the project.

6.3.1.2 Borland C++

1) Ensure that the header files DIO_TC.H and ADIOCTL.H can be located by the compiler, either
in the project directory or in a path added to the include/library directory paths. Failure to find
these files may cause ‘unresolved external’ compilation errors.

2) At the beginning of the application program, add the following lines:

#include <windows.h>
#include "DIO_TC.H"
#include "ADIOCTL.H"

3) Generate a Borland C compatible version of the library link file DIO_TC.LIB by using the

Borland IMPLIB utility.

AMPDIO DRIVERS

Page 81

4) Add the library newly generated file DIO_TC.LIB to project workspace. Note the DIO_TC.LIB
supplied with the AMPDIO package is a Microsoft format library file and is incompatible with
Borland compilers.

6.3.2 Visual Basic 5.0 and 6.0

The Visual Basic example projects can be opened from within Microsoft Visual Basic by choosing
‘File|Open Project…’ in the menu and selecting the appropriate .VBP project file within the EX_VB
subdirectory of the AMPDIO software directory. The project window will now appear on the
desktop. Double-clicking on a .VBP file from within Windows Explorer should also cause Microsoft
Visual Basic to run with the selected project file open. Double-click on any file in the project to view
the source code, or select Run to run the program.

Note that the .VBP files supplied with AMPDIO v5.00 and later were saved by Visual Basic 6.0.
They can still be used with Visual Basic 5.0, but a warning dialog will appear about a ‘Retained’
key. If you tell Visual Basic to continue loading the project, it will work correctly. Saving the project
in Visual Basic 5.0 will stop the warning occuring the next time the project is loaded.

To create your own Visual Basic program from scratch, perform the following steps:

1) From within Microsoft Visual Basic, select 'File|New Project'. A new project window will appear,

into an empty Form1 design window will appear.

2) Select 'File|Add file...' and select ‘DIO_TC.BAS’ from the EX_VB subdirectory of the AmpDIO
software directory.

3) Double-click on the empty Form1 design window to bring up the code window for the
Form_Load() subroutine. At runtime, this routine will be called when the program first starts up.

4) Type the following lines into the Form_Load() subroutine:

Do
 hBoard = registerBoardEx(i)
 If hBoard >= 0 Then
 CardType = GetBoardModel(hBoard)
 If CardType = <Wanted> Then
 Exit Do ' Exit loop as we
 ' have a valid board
 Else
 ' Free the unwanted board
 FreeBoard(hBoard)
 End If
 End If
 hBoard = -1 ' We don't have a suitable card
 ' Try the next board
 i = i + 1
Loop Until (i >= 8)

5) These lines of code will search through installed ADIO cards until the desired card type is

found. The limit of 8 in the ‘Loop Until (i >= 8)’ condition may be increased to 256 if
using DIO_TC.DLL version 4.40 or later.

6) Put away the code window, and select the Form1 design window.

7) Select 'Window|Menu Design...' to bring up the dialog box from which you design the form's
menubar. Type 'Exit' as the caption and 'mnuExit' as the name for the first menu bar item, then
click on OK to put the dialog box away.

AMPDIO DRIVERS

Page 82

8) The menu bar will now appear in the Form1 design window. Click on the 'Exit' item to bring up
the code window for the mnuExit_Click() subroutine. At runtime, this routine will be called
whenever the 'Exit' menu is selected.

9) Type the following lines into the mnuExit_Click() subroutine, to un-registers the board from the
DLL as the program closes.

Dim e As Short
e = FreeBoard(hBoard)
if e <> OK then Call ReportError(e)
End If

These steps will create the shell of a VB application that can now be run. The program at this stage
does nothing more than register a board with the DLL on start-up, and free that board on exit.

Section 6.4 describes the library functions available. Where arguments to functions are described
as pointers, the address of a user-declared variable is required. Visual Basic normally does this
anyway. The function declarations in DIO_TC.BAS uses the ‘ByVal’ prefix for all function
arguments that are not passed as pointers. For example, function TCgetCount requires a pointer to
a variable declared as long, into which the count value result will be placed. A typical VB code
example for displaying the Z1 Counter 0 count value would be as follows:

Dim count As Long ' declare count as long

i = TCgetCount(h, Z1, 0, count)' count now contains new
Text1.Text = Str$(count) ' value

6.3.3 Delphi 3.0 Onwards

To open one of the Delphi example projects provided with the DLL, from within Borland Delphi 3.0
select 'File|Open ' and select one of the .DPR project files provided in the EX_DELPH subdirectory
of the AmpDIO software directory. The project window will now appear on the desktop. Double-
click on any file in the project to view the source code, or select Run to run the program.

To create your own Delphi program from scratch, perform the following steps:

1) From within Borland, select 'File|New Application’. A new project window will appear with an

empty Form1.

2) Select View Project Manager and add DIO_TC.PAS from the EX_DELPH subdirectory of the
AmpDIO software directory:

DIO_TC.PAS - DLL declarations and global constants

3) Double-click on the empty Form1 design window to bring up the code window for the

Form_Load() subroutine. At runtime, this routine will get called when the program first starts
up.

4) Type the following lines into the Form_Load() subroutine:

var
 i:smallint;
 cardtype:smallint;
begin
 // find a board using registerBoardEx which
 // doesn't need to know base address etc etc
 i := 0;
 repeat
 hboard := registerBoardEx(i);

AMPDIO DRIVERS

Page 83

 if hboard >= 0 then
 begin
 cardtype := GetBoardModel(hBoard);
 if cardType = <Wanted> then exit;
 FreeBoard(hBoard);
 end;
 hBoard := -1;
 inc(i);
 until (i >= 8);
end;

These lines of code will search through installed ADIO cards until the desired card type is
found. The limit of 8 in the ‘until (i >= 8)’ condition may be increased to 256 if using
DIO_TC.DLL version 4.40 or later.

5) Add the following global variable underneath the form class definition and global var statement:

var
 Form1: TForm1;
 hBoard:smallInt;

6) Type the following lines into the Form1Close() subroutine, to un-register the board from the

DLL as the program closes.

if hboard >= 0 then
 FreeBoard(hboard);

These steps will create the shell of a Delphi application that can now be run. The program at this
stage does nothing more than register a board with the DLL on start-up, and free that board on
exit.

Section 6.4 describes the library functions available. Where arguments to functions are described
as pointers, the address of a user-declared variable is required. This is taken care of automatically
by Delphi because DIO_TC.PAS interface file insures that the variables will be passed correctly.
For example, function TCgetCount requires a pointer to a variable declared as long, into which the
count value result will be placed. A typical VB code example for displaying the Z1 Counter 0 count
value would be as follows:

var
 count:LongInt;
begin
 TCgetCount(h, Z1, 0, count);
 // count now contains new value
 Label1.caption := InttoStr(count);

6.3.4 Visual Basic .NET

The Visual Basic .NET example projects can be opened from within the Microsoft Visual Studio
.NET development environment by choosing ‘File|Open|Project…’ in the menu and selecting the
appropriate .VBPROJ project file within the EX_VBNET subdirectory of the AmpDIO software
directory. The project window will now appear on the desktop. Double-clicking on a .VBPROJ file
from within Windows Explorer should also cause Microsoft Visual Studio .NET to run with the
selected project file open. Double-click on any file in the project to view the source code or form
design (if both are present, they are displayed under separate tabs). To run the example, press the
F5 key or select ‘Debug|Start’ in the menu.

To create your own Visual Basic .NET program from scratch within Microsoft Visual Studio .NET,
perform the following steps:

1) From within Microsoft Visual Studio .NET, select ‘File|New|Project…’ in the menu. In the ‘New

Project’ dialog, choose ‘Visual Basic Projects’ in the ‘Project Types’ box and ‘Windows

AMPDIO DRIVERS

Page 84

Application’ in the ‘Templates’ box. Enter a name for the project and specify a location using
the ‘Browse…’ button. Press the ‘OK’ button to continue.

2) Select ‘File|Add Existing Item’ from the menu and add DIO_TC.VB from the the EX_VBNET
subdirectory of the AmpDIO software directory.

3) Close the Form1 design window and source code window (if present) and open the properties
for the project, ‘Project|<Project name> Properties’. Clear the ‘Root Namespace’ property to
allow the DIO_TC.VB file to be used without modification. Press ‘OK’ to close the project
properties dialog.

4) Select ‘View|Solution Explorer’ from the menu. Double click on the Form1.vb file in the Solution
Explorer window to open the form design window. Double-click on the empty Form1 design
window to bring up the code window for the Form1_Load() subroutine. At runtime, this routine
will be called when the program first starts up.

5) At the top of the source code window, enter the following line to import the DIO_TC.DLL
functions:

Imports Amplicon.AmpDIO.DIO_TC

6) Add the following code under ‘Public Class Form1’ after the ‘Inherits’ statements:

Dim hBoard As Short

7) Add the following code to the Form1_Load() subroutine:

Dim i As Short
Dim CardType As Short

Do
 hBoard = registerBoardEx(i)
 If hBoard >= 0 Then
 CardType = GetBoardModel(hBoard)
 If CardType = <Wanted> Then
 Exit Do ' Exit main Loop as we
 ' have valid card
 Else
 ' Free the unwanted card
 FreeBoard (hBoard)
 End If
 End If
 hBoard = -1 ' We don't have a suitable card
 ' Try the Next card
 i = i + 1
Loop Until (i >= NUMBER_CARD_SUPPORTED)

8) While the cursor is in the Form1_Load subroutine, select the ‘Closed’ method from the drop-

down selection box at the top right of the source code window and add the following code to
the Form1_Closed subroutine:

If hBoard >= 0 Then
 FreeBoard(hBoard)
End If

These steps will create the shell of a VB.NET application that can now be run. The program at this
stage does nothing more than register a board with the DLL on start-up, and free that board on
exit.

Section 6.4 describes the library functions available. Where arguments to functions are described
as pointers, the address of a user-declared variable is required. Visual Basic normally does this
anyway. The function declarations in DIO_TC.VB uses the ‘ByVal’ prefix for all function arguments

AMPDIO DRIVERS

Page 85

that are not passed as pointers and the ‘ByRef’ prefix for function arguments that are passed as
pointers. For example, function TCgetCount requires a pointer to a variable declared as long, into
which the count value result will be placed. A typical VB.NET code example for displaying the Z1
Counter 0 count value would be as follows:

Dim count As Integer

i = TCgetCount(hBoard, Z1, 0, count)' count now contains new
Text1.Text = Str(count) ' value

6.3.5 Visual C# .NET

The Visual C# .NET example projects can be opened from within the Microsoft Visual Studio .NET
development environment by choosing ‘File|Open|Project…’ in the menu and selecting the
appropriate .CSPROJ project file within the EX_C# subdirectory of the AmpDIO software directory.
The project window will now appear on the desktop. Double-clicking on a .CSPROJ file from within
Windows Explorer should also cause Microsoft Visual Studio .NET to run with the selected project
file open. Double-click on any file in the project to view the source code or form design (if both are
present, they are displayed under separate tabs). To run the example, press the F5 key or select
‘Debug|Start’ in the menu.

To create your own Visual C# .NET program from scratch within Microsoft Visual Studio .NET,
perform the following steps:

1) From within Microsoft Visual Studio .NET, select ‘File|New|Project…’ in the menu. In the ‘New

Project’ dialog, choose ‘Visual C# Projects’ in the ‘Project Types’ box and ‘Windows
Application’ in the ‘Templates’ box. Enter a name for the project and specify a location using
the ‘Browse…’ button. Press the ‘OK’ button to continue.

2) Select ‘File|Add Existing Item’ from the menu and add Dio_tc_h.CS from the the EX_C#
subdirectory of the AmpDIO software directory.

3) On the main menu, select ‘Project|<Project name> Properties...’. Select ‘Configuration
Properties|Build’ on the left-hand panel. On the right-hand panel, set the ‘Code
Generation|Allow Unsafe Code Blocks’ property to ‘True’. Press the ‘OK’ button to close the
project properties dialog.

4) Double-click on the empty Form1 design window to bring up the code window for the
Form1_Load() subroutine. At runtime, this routine will be called when the program first starts
up.

5) Near the top of the source code window, enter the following line to import the DIO_TC.DLL
functions:

using Amplicon.AmpDIO;

6) Add the following declarations to the Form1 class before the ‘main’ function:

short hBoard;

7) Add the following code to the Form1_Load() function:

short i;
short CardType;

for (i = 0; i < DIO_TC.NUMBER_CARD_SUPPORTED; i++)
{
 hBoard = DIO_TC.registerBoardEx(i);
 if (hBoard >= 0)
 {

AMPDIO DRIVERS

Page 86

 CardType = DIO_TC.GetBoardModel(hBoard);
 if (CardType = <Wanted>)
 {
 break; // Exit loop as we
 // have valid card
 }
 else
 {
 // Free the unwanted card
 DIO_TC.FreeBoard(hBoard);
 }
 }
 hBoard = -1; // We don't have a suitable card
 // Try the Next card
}

8) Go back to the form design window and press the F4 key to open the form’s properties

window. On the form properties, select ‘Events’ (represented by a ‘lightning strike’ icon).
Double click on the ‘Behavior|Closed’ method to add the ‘Form1_Closed’ function to the source
code window and add the following code to the function:

if (hBoard >= 0)
{
 DIO_TC.FreeBoard(hBoard);
}

These steps will create the shell of a C#.NET application that can now be run. The program at this
stage does nothing more than register a board with the DLL on start-up, and free that board on
exit.

Section 6.4 describes the library functions available. All functions and constants are part of the
‘DIO_TC’ class in the ‘Amplicon.AmpDIO’ namespace. Where arguments to functions are
described as pointers, the address of a user-declared variable is required. For a simple variable,
the ‘&’ operator may be used, as for the C language. For example, function TCgetCount requires a
pointer to a variable declared as long, into which the count value result will be placed. A typical
C#.NET code example for displaying the Z1 Counter 0 count value would be as follows:

int count;

DIO_TC.TCgetCount(hBoard, Z1, 0, &count);
Text1.Text = count.ToString;

To pass a pointer to the first element of an array to one of the library functions, it is necessary to
use a ‘fixed’ statement to prevent the array being relocated. For example, using the
TCdriveNCBufferUserInterrupt function in some non-callback user interrupt code:

fixed (int *pData = &MyData[0])
{
 DIO_TC.TCDriveNCBufferUserInterrupt(hBoard, hIntr,
 (uint *)pData, &RetLength);
}

6.4 DIO_TC.DLL Library Functions

Details are given of each of the functions provided in the supplied Windows Dynamic Link Library
(DIO_TC.DLL).

AMPDIO DRIVERS

Page 87

6.4.1 Initialization Functions

The board can not be registered with the library unless it has been correctly installed and
configured in he system registry, using the configuration tool supplied (in the control panel).

6.4.1.1 Register a Board with the Library — registerBoard

Requests a card matching a model number, base address and IRQ setting. This function
returns a Board Handle greater than or equal to 0 on success, which must be used in all
subsequent calls to library functions for this board.

i = registerBoard (model, ba, irq)

where model short: board’s model number. The following

pre-defined constants may be used for the
boards supported:

PC212E = 212
PC214E = 214
PC215E = 215
PC272E = 272
PC218E = 218
PC263 = 263
PC272E = 272
PC36AT = 36
PC24E = 24
PC25E = 24 (25 may also be used in v4.30)
PC26AT = 26
PC27E = 27
PC30AT = 30
PCI215 = 215 (same as PC215E)
PCI224 = 224
PCI230 = 230
PCI234 = 234
PCI236 = 36 (236 may also be used)
PCI260 = 260
PCI263 = 263 (same as PC263)
PCI272 = 272 (same as PC272E)

 ba short: board’s base address. Factory default is
300 hex. See section 2.3 for details on
selecting the board's base address.

 irq short: board’s Interrupt level. Factory default is
5. See section 2.3 for details on selecting the
board's interrupt level. The value can be the
real IRQ value or one of the following special
values:

IRQ_ANY = –1: Match any (or no) IRQ
IRQ_NONE = 255: Match IRQ-less card

Returns short: Board handle to be used in all subsequent function calls for that

board.

or ERRSUPPORT
ERRBASE
ERRIRQ

AMPDIO DRIVERS

Page 88

Prior Calls none

See Also registerBoardEx

registerBoardPci
FreeBoard

6.4.1.2 Extended Register Board Function — registerBoardEx

Requests use of a card at a specified slot number. This function returns a Board Handle
greater than or equal to 0 on success.

SUPPORTED IN VERSION 2.00 ONWARDS.

i = registerBoardEx (CardNo);

where CardNo short: card ‘Slot Number’. The slot number can

be determined by looking at the order cards
are installed in the system. I.E. if there are two
cards listed in the device manager or control
panel applet and the wanted card is listed first,
its slot number is 0.

Returns short: Board handle to be used in all subsequent function calls for that
board.

or ERRSUPPORT
ERRBASE
ERRIRQ

Prior Calls none

See Also registerBoard
registerBoardPci
FreeBoard

6.4.1.3 Register a PCI Board by Model, Bus and Slot Position — registerBoardPci

Requests use of a PCI card matching a model number, PCI bus and PCI slot number
(determined by which PCI slot the card is plugged into). This function returns a Board Handle
greater than or equal to 0 on success.

SUPPORTED IN VERSION 4.20 ONWARDS.

i = registerBoardPci (model, bus, slot);

where model short: board’s model number. The following

pre-defined constants may be used for the
boards supported:

PCI215 = 215
PCI224 = 224
PCI230 = 230
PCI234 = 234
PCI236 = 36 (236 may also be used)
PCI260 = 260
PCI263 = 263

AMPDIO DRIVERS

Page 89

PCI272 = 272

 bus short: PCI bus number (usually 0).

 slot short: PCI slot number.

Returns short: Board handle to be used in all subsequent function calls for that
board.

or ERRSUPPORT

Prior Calls none

See Also registerBoard
registerBoardPci
FreeBoard

6.4.1.4 Get the Model Number of a Board — GetBoardModel

Returns the model number of a registered board. N.B. where a PCI board shares a model
number with an ISA board, they may be distinguished by calling the GetBoardPciPosition
function, which will return an error for an ISA board.

The only oddities in the returned model numbers are 25 (which can be a PC24E or PC25E)
and 36 (which can be a PC36AT or a PCI236).

The PCI230+ and PCI260+ may be distinguished from the older PCI230 and PCI260 models
by calling the DIO_TC_hardwareVersion function, supported in verssion 4.42 onwards.

i = GetBoardModel (h)

where h short: board handle as issued by the

registerBoardEx function.

Returns short: Board’s model number. Possible values are:-

212: Amplicon PC212E
214: Amplicon PC214E
215: Amplicon PC215E or PCI215
218: Amplicon PC218E
263: Amplicon PC263 or PCI263
272: Amplicon PC272E or PCI272
 36: Amplicon PC36AT or PCI236
 24: Amplicon PC24E or PC25E
 26: Amplicon PC26AT
 27: Amplicon PC27E
 30: Amplicon PC30AT
230: Amplicon PCI230 or PCI230+
260: Amplicon PCI260 or PCI260+
224: Amplicon PCI224
234: Amplicon PCI234

or ERRHANDLE

Prior Calls registerBoardEx

See Also GetBoardBase

AMPDIO DRIVERS

Page 90

GetBoardIRQ
GetBoardPciPosition
DIO_TC_hardwareVersion

6.4.1.5 Get Board Base Address — GetBoardBase

Gets the base-address setting of a board as set in the registry.

SUPPORTED IN VERSION 4.02 ONWARDS.

i = GetBoardBase (h)

where h short: board handle as issued by the

registerBoardEx function.

Returns short: Base address.

or 0 for invalid board handle

Prior Calls registerBoardEx

See Also GetBoardModel
GetBoardIRQ
GetBoardPciPosition

6.4.1.6 Get Board IRQ — GetBoardIRQ

Gets the IRQ setting of a board as set in the registry.

SUPPORTED IN VERSION 4.02 ONWARDS.

i = GetBoardIRQ (h)

where h short: board handle as issued by the

registerBoardEx function.

Returns short: IRQ setting.

or 255 (= IRQ_NONE) if board handle invalid or board set-up without
IRQ.

Prior Calls registerBoardEx

See Also GetBoardModel
GetBoardBase
GetBoardPciPosition

6.4.1.7 Get Board PCI Bus Position — GetBoardPciPosition

Gets the PCI bus and slot number for a PCI card. If the card is an ISA card or the information
is not available from the driver, the bus and slot values read will be –1 and the function will
return ERRSUPPORT.

SUPPORTED IN VERSION 4.20 ONWARDS.

i = GetBoardPciPosition (h, pbus, pslot)

AMPDIO DRIVERS

Page 91

where h short: board handle as issued by the
registerBoardEx function.

 pbus pointer to short: pointer to variable where PCI
bus number result will be stored.

 pslot pointer to short: pointer to variable where PCI
slot number result will be stored.

Returns short: OK

or ERRHANDLE
ERRSUPPORT
ERRDATA

Prior Calls registerBoardEx

See Also GetBoardModel
GetBoardBase
GetBoardIRQ

6.4.1.8 Unregister a Board — FreeBoard

Frees a previously registered board, allowing it to used by another program.

i = FreeBoard (h)

where h short: board handle as issued by the

registerBoardEx function.

Returns short: OK

or ERRHANDLE

Prior Calls registerBoardEx

See Also

6.4.1.9 Get Driver Version — DIO_TC_driverVersion

Gets version number from driver using IOCTL_QUERY_VERSION.

SUPPORTED IN VERSION 4.02 ONWARDS.

i = DIO_TC_driverVersion (h, pver)

where h short: board handle as issued by the

registerBoardEx function.

 pver pointer to unsigned long: pointer to variable
where driver version result will be stored. The
driver version result is set according to the
driver version number if supported by the
driver (driver versions 4.02 onwards) or to 0 if
unsupported. The value is formatted as
follows:

AMPDIO DRIVERS

Page 92

Bits 31 to 24: Major version
Bits 23 to 16: Minor version
Bits 15 to 0: All zero.

Returns short: OK

or ERRHANDLE

ERRSUPPORT
ERRDATA

Prior Calls registerBoardEx

See Also DIO_TC_dllVersion
DIO_TC_hardwareVersion

6.4.1.10 Get DLL Version — DIO_TC_dllVersion

Gets value of the DIO_TC_VERSION macro in DIO_TC.H at the time the DLL was compiled.

SUPPORTED IN VERSION 4.02 ONWARDS.

i = DIO_TC_dllVersion ()

Returns short: (256*major)+minor

e.g. 4.02 becomes ((4*256)+2) = 1026.

Prior Calls none

See Also DIO_TC_driverVersion
DIO_TC_hardwareVersion

6.4.1.11 Get Hardware Version — DIO_TC_hardwareVersion

Gets the version number of the board from the driver using IOCTL_QUERY_HWVERSION.

SUPPORTED IN VERSION 4.42 ONWARDS.

PCI230+ and PCI260+ can be distinguished from PCI230 and PCI260 by driver version 4.42
or later.

From version 4.44 onwards, the reported hardware version is limited to the maximum value
known by the driver and DLL for the card. This allows an application to check which extra card
features are supported by the overall system.

i = DIO_TC_hardwareVersion (h, pver)

where h short: board handle as issued by the

registerBoardEx function.

 pver pointer to unsigned long: pointer to variable
where hardware version result will be stored.
By default, it is set to 0. If the driver detects an
enhanced version of a board, it is set to a
number greater than 0.

For PCI230+ and PCI260+, the version is at

AMPDIO DRIVERS

Page 93

least 1. For the older PCI230 and PCI260, the
version is 0.

Returns short: OK

or ERRHANDLE
ERRDATA

Prior Calls registerBoardEx

See Also DIO_TC_driverVersion
DIO_TC_dllVersion
DIO_TC_realHardwareVersion

6.4.1.12 Get Real Hardware Version — DIO_TC_realHardwareVersion

Gets the real version number of the board from the driver using
IOCTL_QUERY_REALHWVERSION.

SUPPORTED IN VERSION 5.02 ONWARDS.

This is like DIO_TC_hardwareVersion except that the reported value is not limited to the
maximum value supported by the driver and DLL for the card. This allows an application to
check whether the card has a particular feature or bug-fix that is not necessarily supported by
the current driver or DLL.

If the function returns ERRSUPPORT, the real hardware version could not be determined due
to the driver version in use, but the reported version will be set to the value reported by
DIO_TC_hardwareVersion instead.

i = DIO_TC_realHardwareVersion (h, pver)

where h short: board handle as issued by the

registerBoardEx function.

 pver pointer to unsigned long: pointer to variable
where hardware version result will be stored.
By default, it is set to 0. If the driver detects an
enhanced version of a board, it is set to a
number greater than 0.

For PCI230+ and PCI260+, the version is at
least 1. For the older PCI230 and PCI260, the
version is 0.

Returns short: OK

or ERRHANDLE
ERRDATA
ERRSUPPORT

Prior Calls registerBoardEx

See Also DIO_TC_hardwareVersion

AMPDIO DRIVERS

Page 94

6.4.1.13 Control Hardware Reinitialization — DIO_TC_SetResetOnRegister

Controls whether or not the board registration functions reinitialize the hardware on the board
being registered. By default, the board registration functions do reinitialize the hardware.

SUPPORTED IN VERSION 4.40 ONWARDS.

Initialization involves setting PPI ports to input mode (using 8255 mode 0), any other digital
outputs to zero, ADC channels to bipolar, single-ended mode and maximum input range, ADC
multiplexer to channel 0, ADC conversion trigger source to software trigger, DAC channels to
bipolar with minimum output range and all DAC outputs set to 0 (which generally produces 0V
output). Note that timer counter channels and counter clock and gate connections are not
initialized.

Note that regardless of the DLL reinitializing the hardware on the board being registered,
versions of the hardware device driver prior to version 4.40 also reinitialize the hardware on a
board everytime it is opened. Version 4.40 of the hardware device driver only initializes the
hardware once before it is opened for the first time. The registerBoard and registerBoardPci
functions may open several unopen boards temporarily while looking for the one specified by
the function's parameters. The DLL only initializes the hardware on at most one of these
boards (the one referred to by the returned board handle), but older versions of the device
driver will reinitialize the hardware on each of them.

DIO_TC_SetResetOnRegister (fROR)

where fROR short: controls whether or not subsequent

calls to the board registration functions will
reinitialize the hardware on the board referred
to by their returned board handles:

0 = Do not reinitialize hardware
other = Reinitialize hardware (default)

Returns void.

Prior Calls none

See Also DIO_TC_GetResetOnRegister

registerBoard
registerBoardEx
registerBoardPci

6.4.1.14 Check Whether Hardware Will be Reinitialized — DIO_TC_GetResetOnRegister

Indicates whether or not the board registration functions will reinitialize the hardware on the
board being registered. See the description of the DIO_TC_SetResetOnRegister function for
more details.

SUPPORTED IN VERSION 4.40 ONWARDS.

i = DIO_TC_GetResetOnRegister ()

Returns short: Value indicating whether or not subsequent calls to the board

registration functions will reinitialize the hardware on the board:

0 = Do not reinitialize hardware
1 = Reinitialize hardware (default)

AMPDIO DRIVERS

Page 95

Prior Calls none

See Also DIO_TC_SetResetOnRegister
registerBoard
registerBoardEx
registerBoardPci

6.4.2 Interrupt Control Functions

6.4.2.1 Enable a Board's Interrupts — enableInterrupts

Enables the card’s interrupts to be processed by the driver. This enables interrupts at the first
level. A card’s interrupt sources are active when enabled at both the first level and the second
level and have been set up using one of the interrupt set-up functions such as
TCsetEventRecorder or TCsetUserInterrupt.

Interrupts are initially disabled at the first level.

i = enableInterrupts (h)

where h short: board handle as issued by the

registerBoardEx function.

Returns short: OK

or ERRHANDLE

Prior Calls registerBoardEx

See Also disableInterrupts
interruptsEnabledP
setIntMask
getIntMask

6.4.2.2 Disable a Board's Interrupts — disableInterrupts

Disables the card’s interrupts. This disables interrupts at the first level. Any active interrupt
sources which have been enabled at the second level and set-up using one of the interrupt
set-up functions such as TCsetEventRecorder or TCsetUserInterrupt will cease to operate.

Interrupts are initially disabled at the first level.

i = disableInterrupts (h)

where h short: board handle as issued by the

registerBoardEx function.

Returns short: OK

or ERRHANDLE

Prior Calls registerBoardEx

See Also enableInterrupts
interruptsEnabledP
setIntMask

AMPDIO DRIVERS

Page 96

getIntMask

6.4.2.3 Check whether a Board's Interrupts are Enabled — interruptsEnabledP

Reports whether the card's interrupts are enabled or not at the first level.

SUPPORTED IN VERSION 4.40 ONWARDS

Interrupts are initially disabled at the first level.

i = interruptsEnabledP (h)

where h short: board handle as issued by the

registerBoardEx function.

Returns short: FALSE (= 0) if interrupts are not enabled at the first level
TRUE (= 1) if interrupts are enabled at the first level

Prior Calls registerBoardEx

See Also enableInterrupts
disableInterrupts

6.4.2.4 Enable a Board's Interrupt Source(s) — setIntMask

Enables or disables interrupt sources. This provides a second level of enabling and disabling,
the first level being provided by enableInterrupts and disableInterrupts. Each supported card
has up to six interrupt sources. This function says which ones should be enabled and which
ones disabled. An interrupt source is active when it is enabled at the first level
(enableInterrupts) and at the second level and has been set-up (TCsetEventRecorder,
TCsetUserInterrupt, etc.).

In versions of the DLL up to version 4.39, all interrupt sources are initially disabled at the
second level, but are automatically enabled by the interrupt set-up functions.

In versions of the DLL from version 4.40 onwards, all valid interrupt sources are initially
enabled at the second level and are no longer automatically enabled by the interrupt set-up
functions. This allows an interrupt source to be set up without enabling it at the second level.

i = setIntMask (h, mask)

where h short: board handle as issued by the

registerBoardEx function.

 mask short: mask bits. Bits 0 to 5 correspond to the
six possible interrupt sources. Set a bit to ‘1’ to
enable and to ‘0’ to disable an interrupt source.
For cards with an interrupt enable (IE) register,
these bits correspond with the matching bits in
the IE register. The interrupt source ‘chip’
parameter used in the interrupt set-up
functions corresponds to the interrupt mask bit
position multiplied by 4 (e.g. ‘chip’ = 8
corresponds to mask bit position of 2 and a
mask value of 22 = 1002 = 4). The bit positions
for the board’s interrupt sources will vary from
board to board. Refer to individual card

AMPDIO DRIVERS

Page 97

manuals for a description of the interrupt
sources, and their functionality.

Returns short: OK

or ERRHANDLE
ERRSUPPORT

Prior Calls registerBoardEx

See Also getIntMask
TCenableInterruptChip
TCdisableInterruptChip
enableInterrupts
disableInterrupts

6.4.2.5 Check Which Interrupt Sources are Enabled — getIntMask

Reports which interrupt sources are enabled at the second level. The return value is a bit
mask. Interrupt sources that are enabled are not necessarily active. An interrupt source is
active if it is enabled at the first and second levels and is set up.

SUPPORTED IN VERSION 4.40 ONWARDS

mask = getIntMask (h)

where h short: board handle as issued by the

registerBoardEx function.

Returns short: Mask bits. Bits 0 to 5 correspond to the six possible interrupt
sources. A bit set to ‘1’ indicates that the corresponding interrupt
source is enabled, but not necessarily active. For cards with an
interrupt enable (IE) register, these bits correspond with the
matching bits in the IE register. The interrupt source ‘chip’
parameter used in the interrupt set-up functions corresponds to the
interrupt mask bit position multiplied by 4 (e.g. ‘chip’ = 8
corresponds to mask bit position of 2 and a mask value component
of 22 = 1002 = 4). Refer to individual card manuals for a description
of the interrupt sources, and their functionality. The returned value
is the sum of the mask value components for each interupt source
enabled at the second level. The bit positions for the board’s
interrupt sources will vary from board to board.

Prior Calls registerBoardEx

See Also setIntMask

6.4.2.6 Read Interrupt Status Register — getIntStat

Reads a card’s interrupt status register if it has one. This is not very useful.

i = getIntStat (h)

where h short: board handle as issued by the

registerBoardEx function.

Returns short: interrupt status word (>= 0)

AMPDIO DRIVERS

Page 98

or ERRHANDLE

Prior Calls registerBoardEx

See Also

6.4.2.7 Enable an Individual Interrupt Source — TCenableInterruptChip

Enables an interrupt source at the second level if it is a valid interrupt source for the card. An
interrupt source is active when it is enabled at the first level (enableInterrupts) and at the
second level and has been set-up (TCsetEventRecorder, TCsetUserInterrupt, etc.).

SUPPORTED IN VERSION 4.40 UPWARDS

In versions of the DLL from version 4.40 onwards, all valid interrupt sources are initially
enabled at the second level.

i = TCenableInterruptChip (h, Chip)

where h short: board handle as issued by the

registerBoardEx function.

 Chip short: interrupt source as used in the user
interrupt set-up functions. For historic reasons,
this corresponds to a bit position in the
interrupt enable (IE) mask, multiplied by 4. The
following pre-defined constants may be used:

X1 = 0 PPIXC0 = 0
X2 = 4 PPIXC3 = 4
Y1 = 8 PPIYC0 = 8
Y2 = 12 PPIYC3 = 12
Z1 = 16 PPIZC0 = 16
Z2 = 20 PPIZC3 = 20
PPIX = 0 PPIYC7 = 8
PPIY = 8 EXT0 = 0
PPIZ = 16 ADC0 = 0
 ADC2 = 8
 DAC2 = 8
 DAC4 = 16
 SATRIG = 12

Returns short: OK

or ERRHANDLE

ERRCHAN

Prior Calls registerBoardEx

See Also TCdisableInterruptChip
setIntMask
getIntMask
TCenableUserInterrupt

AMPDIO DRIVERS

Page 99

6.4.2.8 Disable an Individual Interrupt Source — TCdisableInterruptChip

Disables an interrupt source at the second level if it is a valid interrupt source for the card. If
the interrupt source is active, it will be deactivated.

SUPPORTED IN VERSION 4.40 UPWARDS

In versions of the DLL from version 4.40 onwards, all valid interrupt sources are initially
enabled at the second level.

i = TCdisableInterruptChip (h, Chip)

where h short: board handle as issued by the

registerBoardEx function.

 Chip short: interrupt source as used in the user
interrupt set-up functions. For historic reasons,
this corresponds to a bit position in the
interrupt enable (IE) mask, multiplied by 4. The
following pre-defined constants may be used:

X1 = 0 PPIXC0 = 0
X2 = 4 PPIXC3 = 4
Y1 = 8 PPIYC0 = 8
Y2 = 12 PPIYC3 = 12
Z1 = 16 PPIZC0 = 16
Z2 = 20 PPIZC3 = 20
PPIX = 0 PPIYC7 = 8
PPIY = 8 EXT0 = 0
PPIZ = 16 ADC0 = 0
 ADC2 = 8
 DAC2 = 8
 DAC4 = 16
 SATRIG = 12

Returns short: OK

or ERRHANDLE

ERRCHAN

Prior Calls registerBoardEx

See Also TCenableInterruptChip
setIntMask
getIntMask
TCdisableUserInterrupt

6.4.3 Thread Priority Control

6.4.3.1 Set Real Time Priority — DIO_TC_getrealtimepriority

Puts current process and thread into real time priority. Prior to version 4.23, this was only
done for Windows NT. For version 4.23 onwards it is also done for Windows 9x.

i = DIO_TC_getrealtimepriority ()

Returns BOOLEAN: TRUE on success

AMPDIO DRIVERS

Page 100

or FALSE on failure

Prior Calls none

See Also

6.4.3.2 Set Normal Priority — DIO_TC_restorenormalpriority

Puts current process and thread back to normal priority. Prior to version 4.23, this was only
done for Windows NT. For version 4.23 onwards it is also done for Windows 9x.

i = DIO_TC_restorenormalpriority ()

Returns BOOLEAN: TRUE on success

or FALSE on failure

Prior Calls none

See Also

6.4.3.3 Get Priority of User Interrupt Thread — TCgetInterruptThreadPriority

Gets the Win32 thread priority value used for the user interrupt callback thread. May be used
even if the user interrupt thread is not currently running (e.g. has not been enabled).

When the interrupt set-up function is called, the user interrupt thread priority is initialized to the
priority of the calling thread. Calls to TCsetInterruptThreadPriority change this value. The
function gets the value set by the interrupt set-up function or TCsetInterruptThreadPriority,
even if the priority of the user interrupt thread has been changed by some other mechanism in
the meantime.

SUPPORTED IN VERSION 4.23 ONWARDS.

i = TCgetInterruptThreadPriority (h, hUsrInt, pPriority)

where h short: board handle as issued by the

registerBoardEx function.

 hUsrInt short: user interrupt handle as issued by user
interrupt set-up function.

 pPriority pointer to int: pointer to (long) integer variable
which will be set to the priority of the user
interrupt thread.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetUserInterrupt
TCsetUserInterruptAIO
TCsetUserInterrupt2

AMPDIO DRIVERS

Page 101

TCsetBufferUserInterrupt
TCsetBufferUserInterruptAIO
TCsetBufferUserInterrupt2

See Also TCsetInterruptThreadPriority

6.4.3.4 Set Priority of User Interrupt Thread — TCsetInterruptThreadPriority

Sets the Win32 thread priority value used for the user interrupt callback thread. May be used
even if the user interrupt thread is not currently running (e.g. has not been enabled).

When the interrupt set-up function is called, the user interrupt thread priority is initialized to the
priority of the calling thread. This function may be used to change that value. If the user
interrupt callback thread is currently running, its priority will be changed immediately. If the
user interrupt has not been enabled yet, this priority value will be used when the user interrupt
callback thread is created when the user interrupt is enabled (usually by enableInterrupts).

The function may not be used with non-callback user interrupts, as no separate thread is
created to handle those. The function returns ERRSUPPORT if used with a non-callback user
interrupt or if the function failed to change the priority of a running user interrupt callback
thread.

SUPPORTED IN VERSION 4.23 ONWARDS.

i = TCsetInterruptThreadPriority (h, hUsrInt, Priority)

where h short: board handle as issued by the

registerBoardEx function.

 hUsrInt short: user interrupt handle as issued by user
interrupt set-up function.

 Priority int: standard Win32 thread priority value to
use. Values defined in the WIn32 SDK are as
follows:

THREAD_PRIORITY_IDLE = –15
THREAD_PRIORITY_LOWEST = –2
THREAD_PRIORITY_BELOW_NORMAL = –1
THREAD_PRIORITY_NORMAL = 0
THREAD_PRIORITY_ABOVE_NORMAL = 1
THREAD_PRIORITY_HIGHEST = 2
THREAD_PRIORITY_TIME_CRITICAL = 15

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRSUPPORT

Prior Calls registerBoardEx
TCsetUserInterrupt
TCsetUserInterruptAIO
TCsetUserInterrupt2
TCsetBufferUserInterrupt
TCsetBufferUserInterruptAIO
TCsetBufferUserInterrupt2

AMPDIO DRIVERS

Page 102

See Also TCgetInterruptThreadPriority
enableInterrupts

6.4.4 Data Buffer Functions

6.4.4.1 Allocate a Short Integer Data Buffer — allocateIntegerBuf

Creates a data buffer, by allocating a block of memory of short integer (16-bit) data. The
function returns a Buffer Handle (>= 0). The Buffer Handle must be used in any subsequent
function calls to identify that particular data buffer.

b = allocateIntegerBuf (nItems)

where nItems long: number of data items to be allocated. If

there is insufficient memory available for the
size of the buffer, an error is returned.

Returns short: Buffer Handle (>= 0). This handle must be used in all subsequent
function calls to identify the buffer.

or ERRSUPPORT
ERRMEMORY

Prior Calls none

See Also freeIntegerBuf

6.4.4.2 Allocate a Long Integer Data Buffer — allocateLongBuf

Creates a data buffer, by allocating a block of memory of long integer (32-bit) data. The
function returns a Buffer Handle (>= 0). The Buffer Handle must be used in any subsequent
function calls to identify that particular data buffer. A long integer data buffer is required by the
function TCsetEventRecorder

b = allocateLongBuf (nItems)

where nItems long: Number of data items to be allocated. If

there is insufficient memory available for the
size of the buffer, an error is returned.

Returns short: Buffer Handle (>= 0). This handle must be used in all subsequent
function calls to identify the buffer.

or ERRSUPPORT
ERRMEMORY

Prior Calls none

See Also freeLongBuf

6.4.4.3 Free up a Short Integer Data Buffer — freeIntegerBuf

Frees a block of memory previously allocated for the given data buffer by the
allocateIntegerBuf function.

AMPDIO DRIVERS

Page 103

i = freeIntegerBuf (b)

where b short: buffer handle as issued by the

allocateIntegerBuf function.

Returns short: OK

or ERRBUFFER

Prior Calls allocateIntegerBuf

See Also

6.4.4.4 Free up a Long Integer Data Buffer — freeLongBuf

Frees a block of memory previously allocated for the given data buffer by the allocateLongBuf
function.

i = freeLongBuf (b)

where b short: buffer handle as issued by the

allocateLongBuf function.

Returns short: OK

or ERRBUFFER

Prior Calls allocateLongBuf

See Also

6.4.4.5 Read Data from a Short Integer Buffer — readIntegerBuf

Reads a data item from a short integer buffer, returning the item via a user-supplied pointer.
The pointer must reference a short integer variable.

i = readIntegerBuf (b, item, p)

where b short: buffer handle, as issued by the

allocateIntegerBuf function

 item long: index of the data item in the buffer.

 p pointer to short: points to a short integer
variable to be used for the result.

Returns short: OK

or ERRBUFFER
ERRRANGE

Prior Calls allocateIntegerBuf

See Also

AMPDIO DRIVERS

Page 104

6.4.4.6 Read Data from a Long Integer Buffer — readLongBuf

Reads a data item from a long integer buffer, returning the item via a user-supplied pointer.
The pointer must reference a long integer variable.

i = readLongBuf (b, item, p)

where b short: buffer handle, as issued by the

allocateLongBuf function

 item long: index of the data item in the buffer.

 p pointer to long: points to a long integer
variable to be used for the result.

Returns short: OK

or ERRBUFFER
ERRRANGE

Prior Calls allocateLongBuf

See Also

6.4.4.7 Write Data to a Short Integer Buffer — writeIntegerBuf

Writes a single short integer data item to a short integer buffer.

i = writeIntegerBuf (b, item, data)

where b short: buffer handle, as issued by the

allocateIntegerBuf function.

 item long: index of item in buffer.

 data short: data value.

Returns short: OK

or ERRBUFFER
ERRRANGE
ERRDATA

Prior Calls allocateIntegerBuf

See Also

6.4.4.8 Write Data to a Long Integer Buffer — writeLongBuf

Writes a single long integer data item to a long integer buffer.

i = writeLongBuf (b, item, data)

where b short: buffer handle, as issued by the

allocateLongBuf function.

 item long: index of item in buffer.

AMPDIO DRIVERS

Page 105

 data long: data value.

Returns short: OK

or ERRBUFFER
ERRRANGE
ERRDATA

Prior Calls allocateLongBuf

See Also

6.4.4.9 Copy a Block of Data to a Short Integer Buffer — copyToIntegerBuf

Copies a block of short integer data to a short integer buffer.

i = copyToIntegerBuf (b, start, nItems, p)

where b short: buffer handle as issued by the

allocateIntegerBuf function.

 start long: index of the starting item in the buffer.

 nItems long: number of items to copy.

 p pointer to short: pointer to the beginning of
the memory block to copy.

Returns short: OK

or ERRBUFFER
ERRRANGE
ERRDATA

Prior Calls allocateIntegerBuf

See Also

6.4.4.10 Copy a Block of Data to a Long Integer Buffer — copyToLongBuf

Copies a block of long integer data to a long integer buffer.

i = copyToLongBuf (b, start, nItems, p)

where b short: buffer handle as issued by the

allocateLongBuf function.

 start long: index of the starting item in the buffer.

 nItems long: number of items to copy.

 p pointer to long: pointer to the beginning of the
memory block to copy.

Returns short: OK

or ERRBUFFER

AMPDIO DRIVERS

Page 106

ERRRANGE
ERRDATA

Prior Calls allocateLongBuf

See Also

6.4.4.11 Copy a Block of Data from a Short Integer Buffer — copyFromIntegerBuf

Copies a segment of a short integer data buffer to a block of memory.

i = copyFromIntegerBuf (b, start, nItems, p)

where b short: buffer handle as issued by the

allocateIntegerBuf function.

 start long: index of the starting item in the buffer.

 nItems long: number of items to copy.

 p pointer to short: pointer to the beginning of
the short integer memory block to which data is
to be copied.

Returns short: OK

or ERRBUFFER
ERRRANGE
ERRDATA

Prior Calls allocateIntegerBuf

See Also

6.4.4.12 Copy a Block of Data from a Long Integer Buffer — copyFromLongBuf

Copies a segment of a long integer data buffer to a block of memory.

i = copyFromLongBuf (b, start, nItems, p)

where b short: buffer handle as issued by the

allocateLongBuf function.

 start long: index of the starting item in the buffer.

 nItems long: number of items to copy.

 p pointer to long: pointer to the beginning of the
long integer memory block to which data is to
be copied.

Returns short: OK

or ERRBUFFER
ERRRANGE
ERRDATA

AMPDIO DRIVERS

Page 107

Prior Calls allocateLongBuf

See Also

6.4.4.13 Query Current Interrupt Position within a Short Integer Data Buffer — getIntegerIntItem

Gets the current interrupt position within a short integer data buffer. None of the currently
supported interrupt functions in the library use short integer data buffers, so the returned
position will be 0.

i = getIntegerIntItem (b, pitem)

where b short: buffer handle as issued by the

allocateIntegerBuf function.

 pitem pointer to long: pointer to a long integer
variable, into which the result (the index of the
buffer item to be used on the next interrupt) will
be stored.

Returns short: OK

or ERRHANDLE
ERRDATA

Prior Calls allocateIntegerBuf

See Also

6.4.4.14 Query Current Interrupt Position within a Long Integer Data Buffer — getLongIntItem

Gets the current interrupt position within a long integer data buffer. This function can be called
for any data buffer currently being used for Event Recorder data. In this case, data is written
to the buffer when the interrupt occurs. This function returns the index within the specified
buffer of the data item to be read or written to on the next interrupt, giving an indication of how
much of the buffer contains valid data. The position is reset when the Event Recorder is set
up.

i = getLongIntItem (b, pitem)

where b short: buffer handle as issued by the

allocateLongBuf function.

 pitem pointer to long: pointer to a long integer
variable into which the result (the index of the
buffer item to be used on the next interrupt) will
be stored.

Returns short: OK

or ERRHANDLE
ERRDATA

Prior Calls allocateLongBuf

See Also

AMPDIO DRIVERS

Page 108

6.4.5 Basic Timer/Counter Functions

6.4.5.1 Test if Timer/Counter is Free — TCisAvailable

Checks if a particular timer/counter channel is currently available on a board. A counter/timer
may not be available for one of two reasons:
1. the counter/timer is not provided by the board specified, or
2. the counter/timer is being used by some other function.

i = TCisAvailable (h, chip, chan)

where h short: board handle as previously issued by

the registerBoardEx function.

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip, i.e. 0, 1, or 2.

Returns short: 0 = Timer/counter NOT available, 1 = Available

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx

See Also TCfreeResource

6.4.5.2 Free-up Timer/Counter — TCfreeResource

Frees a timer/counter channel previously reserved for use by one of the following functions:

TCsetMonoShot
TCgenerateAccFreq

i = TCfreeResource (h, chip, chan)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12

AMPDIO DRIVERS

Page 109

Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2).

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx

See Also

6.4.5.3 Connect Timer/Counter Clock Source — TCsetClock

Configures a timer/counter clock input source.

i = TCsetClock (h, chip, chan, clk)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2).

 clk short: clock source. One of the following pre-
defined constants representing the valid clock
sources may be used:

CLK_CLK = 0: external CLK(chan) i/p
CLK_10MHZ = 1: internal 10 MHz
CLK_1MHZ = 2: internal 1 MHz
CLK_100KHZ = 3: internal 100 kHz
CLK_10KHZ = 4: internal 10 kHz
CLK_1KHZ = 5: internal 1 kHz
CLK_OUTN_1 = 6: OUT(chan–1)
CLK_EXT = 7: external EXTCLK(chip) i/p

Returns short: OK

or ERRHANDLE

ERRCHAN
ERRDATA

Prior Calls registerBoardEx

AMPDIO DRIVERS

Page 110

See Also TCgetClock

TCgetLinkedClockChannel
TCsetGate

6.4.5.4 Get Connected Timer/Counter Clock Source — TCgetClock

Gets a timer/counter channel’s currently connected clock source, if it has been configured.
This is not supported on PC214E or other models that have no clock connection registers.

Another function such as TCsetClock or one of the higher-level timer/counter functions has to
set the clock source after registering the board in order for this function to return the current
setting. If the current clock setting is not known, the function will return ERRSUPPORT.

SUPPORTED IN VERSION 4.40 ONWARDS.

i = TCgetClock (h, chip, chan, pclk)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2).

 pclk pointer to short: pointer to a short integer
variable into which the current clock source is
to be stored.

Returns short: OK

or ERRHANDLE

ERRCHAN
ERRDATA
ERRSUPPORT

Prior Calls registerBoardEx

See Also TCsetClock

6.4.5.5 Get Linked Clock Channel — TCgetLinkedClockChannel

Determines the GAT_OUTN_2 source channel for a specified timer counter channel.

SUPPORTED IN VERSION 4.40 ONWARDS.

i = TCgetLinkedClockChannel (h, chip, chan, pClkChip, pClkChan)

AMPDIO DRIVERS

Page 111

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2).

 pClkChip pointer to short: pointer to a short integer
variable into which the address offset of the
timer/counter chip containing the linked
channel is to be stored.

 pClkChan pointer to short: pointer to a short integer
variable into which the channel number of the
linked timer/counter channel is to be stored.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCgetLinkedGateChannel
TCsetClock

6.4.5.6 Connect Timer/Counter Gate Source — TCsetGate

Configures a timer/counter gate input source.

Gate input sources 4 to 7 are implemented on the PCI230+ and PCI260+.

i = TCsetGate (h, chip, chan, gate)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16

AMPDIO DRIVERS

Page 112

Z2 = 20

 chan short: timer/counter channel number within the
chip (0, 1 or 2).

 gate short: gate source (0 to 7). One of the
following pre-defined constants may be used:

GAT_VCC = 0: Enabled
GAT_GND = 1: Disabled
GAT_EXT = 2: GAT(chan) — external i/p
GAT_OUTN_2 = 3: /OUT(chan–2)

Note: for PCI230 and PCI230+, GAT(chan)
input is PPI-X C(chan). For PCI260+,
GAT(chan) is EXTTRIG. For the original
PCI260, GAT(chan) is not connected.

PCI230+ and PCI260+ support the following
additional constants:

GAT_LATCHED_EXT = 4: Latched
GAT(chan) — goes high on rising edge
of GAT(chan)

GAT_LATCHED_NOT_EXT = 5: Latched
/GAT(chan) — goes high on falling edge
of GAT(chan)

GAT_NOT_EXT = 6: /GAT(chan) —
inverted external i/p

GAT_UNINV_OUTN_2 = 7: OUT(chan–2)

Returns short: OK

or ERRSUPPORT
ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCgetGate
TCgetLinkedGateChannel
TCsetClock

6.4.5.7 Get Connected Timer/Counter gate Source — TCgetGate

Gets a timer/counter channel’s currently connected gate source, if it has been configured.
This is not supported on PC214E or other models that have no gate connection registers.

Another function such as TCsetGate or one of the higher-level timer/counter functions has to
set the gate source after registering the board in order for this function to return the current
setting. If the current gate setting is not known, the function will return ERRSUPPORT.

SUPPORTED IN VERSION 4.40 ONWARDS.

i = TCgetGate (h, chip, chan, pgate)

where h short: board handle as issued by the

AMPDIO DRIVERS

Page 113

registerBoardEx function.

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2).

 pgate pointer to short: pointer to a short integer
variable into which the current gate source is to
be stored.

Returns short: OK

or ERRHANDLE

ERRCHAN
ERRDATA
ERRSUPPORT

Prior Calls registerBoardEx

See Also TCsetGate

6.4.5.8 Get Linked Gate Channel — TCgetLinkedGateChannel

Determines the GAT_OUTN_2 source channel for a specified timer counter channel.

SUPPORTED IN VERSION 4.40 ONWARDS.

i = TCgetLinkedGateChannel (h, chip, chan, pGatChip, pGatChan)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2).

 pGatChip pointer to short: pointer to a short integer
variable into which the address offset of the

AMPDIO DRIVERS

Page 114

timer/counter chip containing the linked
channel is to be stored.

 pGatChan pointer to short: pointer to a short integer
variable into which the channel number of the
linked timer/counter channel is to be stored.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCgetLinkedClockChannel
TCsetGate

6.4.5.9 Configure Timer/Counter Mode — TCsetMode

Sets a timer counter to one of its six available modes of operation. Reading and loading of
count values by LSB followed by MSB is selected, as is a 16-bit binary count.

i = TCsetMode (h, chip, chan, mode)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2).

 mode short: counter mode (0 to 5). See the 82C54
data sheet.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCsetCount
TCsetClock
TCsetGate
TCgetStatus
TCgetMode

AMPDIO DRIVERS

Page 115

6.4.5.10 Read Timer/Counter Status — TCgetStatus

Returns the mode and status of a timer/counter by performing a read-back operation on the
channel. This does not work on PC24E, PC25E, PC26AT, PC27E or PC30AT as they have
the wrong sort of timer/counter chip.

i = TCgetStatus (h, chip, chan)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2).

Returns short: Timer counter status byte. See the 82C54 data sheet for details.

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetMode
TCsetCount

See Also TCgetCount
TCgetMode

6.4.5.11 Get Timer/Counter Mode — TCgetMode

Gets a timer/counter channel’s current mode, if it has been configured.

Normally, this returns the last mode configured by a function such as TCsetMode or one of
the higher-level timer/counter functions. If the mode has not been set since the board was
registered, the timer/counter chip will be queried if this is supported. (Querying the mode from
the timer/counter chip is not supported on PC24E, PC25E, PC26AT, PC27E and PC30AT.) If
the timer/counter chip reports anything other than a 16-bit binary counter mode, this is
considered invalid. The function returns ERRSUPPORT if no mode has been set and a valid
mode cannot be read from the timer/counter chip.

SUPPORTED IN VERSION 4.40 ONWARDS.

i = TCgetMode (h, chip, chan, pmode)

where h short: board handle as issued by the

registerBoardEx function.

AMPDIO DRIVERS

Page 116

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2).

 pmode pointer to short: pointer to a short integer
variable into which the current counter mode is
to be stored.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA
ERRSUPPORT

Prior Calls registerBoardEx

See Also TCsetMode
TCgetStatus

6.4.5.12 Set Timer Count Value — TCsetCount

Sends a 16-bit count value to a timer/counter.

i = TCsetCount (h, chip, chan, count)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2).

 count long: 16-bit Count value.

Returns short: OK

or ERRHANDLE

AMPDIO DRIVERS

Page 117

ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetMode

See Also TCgetCount
TCsetClock
TCsetGate

6.4.5.13 Set two Timer Count Values — TCsetCounts

Sends two 16-bit count values to two timer/counters.

SUPPORTED IN VERSION 4.00 ONWARDS.

i = TCsetCounts (h, chip1, chan1 count1, chip2, chan2, count2)

where: h short: board handle as issued by the

registerBoardEx function.
 chip1 short: address offset of the timer/counter chip

#1. One of the following pre-defined constants
may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan1 short: timer/counter #1 channel number within

the chip (0, 1 or 2).

 count1 long: 16-bit Count value #1.

 chip2 short: address offset of the timer/counter chip
#2. One of the following pre-defined constants
may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan2 short: timer/counter #2 channel number within

the chip (0, 1 or 2).

 count2 long: 16-bit Count value #2.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

AMPDIO DRIVERS

Page 118

Prior Calls registerBoardEx
TCsetMode

See Also TCsetCount
TCgetCounts
TCsetClock
TCsetGate

6.4.5.14 Read Timer's current Count Value — TCgetCount

Latches and reads a timer/counter's 16-bit count value, using the counter latch command.
(Prior to version 4.23 of the driver, the read-back command was used, but that never worked
properly on PC24E, PC25E, PC26AT, PC27E or PC30AT.)

i = TCgetCount (h, chip, chan, pcount)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2).

 pcount pointer to long: pointer to a long integer
variable into which the count value result will
be placed.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetMode
TCsetCount

See Also TCgetUpCount
TCsetClock
TCsetGate

6.4.5.15 Read Timer's current Up-Count — TCgetUpCount

Latches and reads a timer counter value, in the same way as TCgetCount, but returns the
actual number of clock pulses received, rather than the count value. Note that the 82C54
timers count down to zero from the initial count value, so this function returns ((initial count) –
(current count)). Only counter modes 2 or 3 should be used with this function.

AMPDIO DRIVERS

Page 119

i = TCgetUpCount (h, chip, chan, pcount)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2).

 pcount pointer to long: pointer to a long integer
variable into which the up-count value result
will be placed.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetMode
TCsetCount

See Also TCgetCount
TCsetClock
TCsetGate

6.4.5.16 Reads Two Timer’s current Count Values — TCgetCounts

Latches and reads 16-bit count values from two timer/counter channels. It uses the read-back
command if the channels are on the same 82C54 chip. It uses the counter latch command if
the channels are on different chips or on an older 82C53 chip. (Prior to version 4.23 of the
driver, the read-back command was always used, but that never worked properly on PC24E,
PC25E, PC26AT, PC27E or PC30AT.)

SUPPORTED IN VERSION 2.00 ONWARDS

For driver version 5.04 onwards, a second set of readings is always taken. (Previous versions
of the driver from version 3.00 onwards took a second set of readings if the counters were on
different chips.) If the value of the second timer/counter changes between the two sets of
readings, the second set of readings is used, otherwise the first set of readings is used. This
is useful when the second timer/counter channel is clocked by the output of the first channel.

i = TCgetCounts (h, chip1, chan1, pcount1, chip2, chan2, pcount2)

where: h short: board handle as issued by the

registerBoardEx function.

 chip1 short: address offset of the timer/counter chip

AMPDIO DRIVERS

Page 120

#1. One of the following pre-defined constants
may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan1 short: timer/counter #1 channel number within

the chip (0, 1 or 2).

 pcount1 pointer to long: pointer to a long integer
variable into which the count value #1 result
will be placed.

 chip2 short: address offset of the timer/counter chip
#2. One of the following pre-defined constants
may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan2 short: timer/counter #2 channel number within

the chip (0, 1 or 2).

 pcount2 pointer to long: pointer to a long integer
variable into which the count value #2 result
will be placed.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetMode
TCsetCount
TCsetCounts

See Also TCgetCounts
TCsetClock
TCsetGate

6.4.5.17 Gets a Timer’s Initial Count Value — TCgetInitialCount

Gets a timer/counter channel’s initial count value, if it has been set.

Another function such as TCsetCount or one of the higher-level timer/counter functions has to
set the initial count after registering the board in order for this function to return the current
initial count value. If the current initial count value is not known, the function will return
ERRSUPPORT.

AMPDIO DRIVERS

Page 121

SUPPORTED IN VERSION 4.40 ONWARDS.

i = TCgetInitialCount (h, chip, chan, pcount)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2).

 pcount pointer to long: pointer to a long integer
variable into which the initial count value will be
placed.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA
ERRSUPPORT

Prior Calls registerBoardEx

See Also TCsetCount

6.4.6 Differential Counter Functions

6.4.6.1 Set-up Differential Counter Pair — TCsetDiffCounters

Sets up two counter/timers for a differential count operation. If the gate sources specified are
both GAT_VCC, counting will start immediately. Otherwise the user must provide the gate
signals or set the gates high by a call to TCsetGate. Note that the PC214E does not support
software-configurable clock and gate settings, and the clk1, clk2, gat1, and gat2 arguments
will have no effect. See section 5.2.2 for details on the clock and gate sources available. See
section 3.1.1 for more details on the Differential Counter application.

i = TCsetDiffCounters (h, chip1, chan1, clk1, gat1, chip2, chan2,
clk2, gat2)

where h short: board handle as issued by the

registerBoardEx function.

 chip1 short: address offset of timer/counter chip #1.
One of the following pre-defined constants may
be used:

AMPDIO DRIVERS

Page 122

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan1 short: timer/counter #1 channel number within

the chip (0, 1 or 2).

 clk1 short: timer #1 clock source. One of the
following pre-defined constants may be used:

CLK_CLK = 0: external CLK(chan1) i/p
CLK_10MHZ = 1: 10 MHz
CLK_1MHZ = 2: 1 MHz
CLK_100KHZ = 3: 100 kHz
CLK_10KHZ = 4: 10 kHz
CLK_1KHZ = 5: 1 kHz
CLK_OUTN_1 = 6: OUT(chan1–1)
CLK_EXT = 7: external EXTCLK(chip1) i/p

 gat1 short: timer #1 gate source. One of the

following pre-defined constants may be used:

GAT_VCC = 0: Enabled
GAT_GND = 1: Disabled
GAT_EXT = 2: GAT(chan1) external i/p
GAT_OUTN_2 = 3: /OUT(chan1–2)

 chip2 short: address offset of timer/counter chip #2.

One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20.

 chan2 short: timer/counter #2 channel number within

the chip (0, 1 or 2).

 clk2 short: timer #2 clock source. One of the
following pre-defined constants may be used:

CLK_CLK = 0: external CLK(chan2) i/p
CLK_10MHZ = 1: 10 MHz
CLK_1MHZ = 2: 1 MHz
CLK_100KHZ = 3: 100 kHz
CLK_10KHZ = 4: 10 kHz
CLK_1KHZ = 5: 1 kHz
CLK_OUTN_1 = 6: OUT(chan2–1)
CLK_EXT = 7: external EXTCLK(chip2) i/p

 gat2 short: timer #2 gate source. One of the

following pre-defined constants may be used:

AMPDIO DRIVERS

Page 123

GAT_VCC = 0: Enabled
GAT_GND = 1: Disabled
GAT_EXT = 2: GAT(chan2) external i/p
GAT_OUTN_2 = 3: /OUT(chan2–2)

Returns short: Differential counter handle (>= 0). Use this handle as the hD

parameter in calls to TCgetDiffCount, TCgetRatio and
TCfreeDiffCounters when referring to this particular differential
counter pair.

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCsetGate
TCgetDiffCount
TCgetRatio
TCfreeDiffCounters

6.4.6.2 Read Differential Count — TCgetDiffCount

Reads the difference between the count values of the two counters specified in the
TCsetDiffCounters function.

i = TCgetDiffCount (h, hD, pdiff)

where h short: board handle as issued by the

registerBoardEx function.

 hD short: differential counter handle as issued by
the TCsetDiffCounters function.

 pdiff pointer to long: pointer to a long integer
variable into which the 16-bit count value
representing (Count#2 – Count#1) will be
placed.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetDiffCounters

See Also TCgetRatio
TCfreeDiffCounters

6.4.6.3 Read Differential Ratio — TCgetRatio

Reads the ratio of the count values of the two counter/timers specified in function
TCsetDiffCounters.

AMPDIO DRIVERS

Page 124

i = TCgetRatio (h, hD, pratio)

where h short: board handle as issued by the

registerBoardEx function.

 hD short: differential counter handle as issued by
the TCsetDiffCounters function.

 pratio pointer to float: pointer to a 32-bit floating
point variable into which the value representing
the ratio of counts (Counter#2 / Counter#1) will
be placed.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetDiffCounters

See Also TCgetDiffCount
TCfreeDiffCounters

6.4.6.4 Free Differential Counter Pair — TCfreeDiffCounters

Frees the counter/timers associated with a differential pair, as set up by function
TCsetDifferentialCounters. Call this function when finished with the differential counter.

i = TCfreeDiffCounters (h, hD)

where h short: board handle as issued by the

registerBoardEx function.

 hD short: differential counter handle as issued by
the TCsetDiffCounters function.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetDiffCounters

See Also TCgetDiffCount
TCgetRatio

6.4.7 Millisecond Stopwatch, Event Recorder and Event Counting Functions

6.4.7.1 Prepare a Millisecond Stopwatch — TCsetStopwatch

Sets up a stopwatch, which uses two timer/counters to count in milliseconds for about 50
days. See section 3.1.4 for more details on the Stopwatch application.

AMPDIO DRIVERS

Page 125

i = TCsetStopwatch (h, chip, chan)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2). This channel and the next
channel (chan+1) are used. The second
channel may be on the next timer/counter chip.

Returns short: Stopwatch handle (>= 0). Use this in calls to the other stopwatch
functions to refer to this stopwatch.

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx

See Also TCsetEventRecorder
TCstartStopwatch
TCfreeStopwatch

6.4.7.2 Start a Millisecond Stopwatch — TCstartStopwatch

Starts a stopwatch that has been previously set up by the TCsetStopwatch function.

i = TCstartStopwatch (h, hS)

where h short: board handle as issued by the

registerBoardEx function.

 hS short: handle to stopwatch as issued by the
TCsetStopwatch function.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetStopwatch

See Also TCgetElapsedTime
TCfreeStopwatch

AMPDIO DRIVERS

Page 126

6.4.7.3 Get Stopwatch Elapsed Time — TCgetElapsedTime

Gets the elapsed time, in milliseconds, since a given stopwatch was started.

i = TCgetElapsedTime (h, hS, ptime)

where h short: board handle as issued by the

registerBoardEx function.

 hS short: handle to stopwatch as issued by the
TCsetStopwatch function.

 ptime pointer to long: pointer to a long integer
variable into which the elapsed time result will
be placed.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetStopwatch
TCstartStopwatch

See Also TCgetTimeStr
TCsetEventRecorder

6.4.7.4 Prepare an Event Time Recorder — TCsetEventRecorder

Sets up an event recorder that records the times of positive edges on a PPI Port C bit 0 digital
input (DI) line. The times recorded are the elapsed time since the given stopwatch was
started). This is performed by using a stopwatch, previously set up by a call to
TCsetStopwatch, and enabling the DI line to generate an interrupt. An interrupt service routine
(ISR) stores the elapsed time from the stopwatch into a previously allocated data buffer for
each event. See section 3.4.1 for more details on the Event Recorder application.

i = TCsetEventRecorder (h, hS, chip, hB)

where h short: board handle as issued by the

registerBoardEx function.

 hS short: stopwatch handle as issued by the
TCsetStopwatch function.

 chip short: address offset of the digital input chip
from which Port C bit 0 will be used as the
event input. Use one of the following pre-
defined constants:-

PPIX = 0
PPIY = 8
PPIZ = 16

 hB short: buffer handle as issued by the

allocateLongBuf function.

AMPDIO DRIVERS

Page 127

Returns short: Event recorder handle (>= 0). Use this handle to call the
TCfreeEventRecorder function when finished.

or ERRHANDLE
ERRCHAN
ERRBUFFER

Prior Calls registerBoardEx
TCsetStopwatch
allocateLongBuf

See Also TCfreeEventRecorder
getLongIntItem
readLongBuf
copyFromLongBuf
enableInterrupts

6.4.7.5 Free-up Event Recorder Timer and Digital Input Channels — TCfreeEventRecorder

Frees up the event recorder.

i = TCfreeEventRecorder (h, hE)

where h short: board handle as issued by the

registerBoardEx function.

 hE short: event recorder handle as issued by the
TCsetEventRecorder function.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetStopwatch
allocateLongBuf
TCsetEventRecorder

See Also disableInterrupts
TCfreeStopwatch
freeLongBuf

6.4.7.6 Convert Milliseconds into Time String — TCgetTimeStr

Converts a 32-bit word representing an elapsed time in milliseconds to a time string in the
format “DD HH:MM:SS.TTT”. Such 32-bit elapsed times are produced by the stopwatch
functions.

i = TCgetTimeStr (ms, strPtr)

where ms long: elapsed time in milliseconds.

 strPtr pointer to char: pointer to buffer where null-

terminated string for result is to be written.

Returns short: OK

AMPDIO DRIVERS

Page 128

or ERRDATA

Prior Calls none

See Also TCgetElapsedTime

6.4.7.7 Free-up Stopwatch Counter/Timers — TCfreeStopwatch

Frees the timer/counters used by a stopwatch, as previously set up by TCsetStopwatch. Call
this function when the stopwatch is no longer required.

i = TCfreeStopwatch (h, hS)

where h short: board handle as issued by the

registerBoardEx function.

 hS short: stopwatch handle as issued by the
TCsetStopwatch function.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetStopwatch

See Also

6.4.7.8 Prepare a 32-Bit Event Counter — TCsetEventCounter

Sets up a 32-bit event counter, which uses 2 timer/counters to count events on the clock input
of the specified timer/counter channel.

An 'event' is a rising edge followed by a falling edge on the clock input.

If an internal clock source is used to provide the events, this is similar to the stopwatch
function.

SUPPORTED IN VERSION 4.42 ONWARDS.

See section 3.1.10 for more information on the 32-bit event counter application.

i = TCsetEventCounter (h, chip, chan, clock)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12

AMPDIO DRIVERS

Page 129

Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2). This channel and the next
channel (chan+1) are used. The second
channel may be on the next timer/counter chip.

 clock short: clock source (source of events) for the
event counter. One of the following pre-defined
constants representing the valid clock sources
may be used (usually CLK_CLK or CLK_EXT):

CLK_CLK = 0: external CLK(chan) i/p
CLK_10MHZ = 1: internal 10 MHz
CLK_1MHZ = 2: internal 1 MHz
CLK_100KHZ = 3: internal 100 kHz
CLK_10KHZ = 4: internal 10 kHz
CLK_1KHZ = 5: internal 1 kHz
CLK_OUTN_1 = 6: OUT(chan–1)
CLK_EXT = 7: external EXTCLK(chip) i/p

Returns short: Event counter handle (>= 0). Use this in calls to the other event

counter functions to refer to this event counter.

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx

See Also TCresetEventCounter
TCgetEventCount
TCfreeEventCounter

6.4.7.9 Reset a 32-bit Event Counter — TCresetEventCounter

Resets to zero a 32-bit event counter as previously set up by the TCsetEventCounter function.

SUPPORTED IN VERSION 4.42 ONWARDS.

i = TCresetEventCounter (h, hE)

where h short: board handle as issued by the

registerBoardEx function.

 hE short: event counter handle as issued by the
TCsetEventCounter function.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetEventCounter

See Also TCgetEventCount
TCfreeEventCounter

AMPDIO DRIVERS

Page 130

6.4.7.10 Read a 32-bit Event Counter — TCgetEventCount

Gets the number of events since a given 32-bit event counter, as previously set up by the
TCsetEventCounter function, was set up or reset.

SUPPORTED IN VERSION 4.42 ONWARDS.

i = TCgetEventCount (h, hE, pcount)

where h short: board handle as issued by the

registerBoardEx function.

 hE short: event counter handle as issued by the
TCsetEventCounter function.

 pcount pointer to unsigned long: points to a variable
into which the 32-bit event count is written.

Returns short: 0 = counter not overflowed
1 = counter overflowed

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetEventCounter

See Also TCresetEventCounter
TCfreeEventCounter

6.4.7.11 Free up 32-bit Event Counter — TCfreeEventCounter

Frees up a 32-bit event counter as previously set up by the TCsetEventCounter function. Call
this function when the event counter is no longer required.

SUPPORTED IN VERSION 4.42 ONWARDS.

i = TCfreeEventCounter (h, hE)

where h short: board handle as issued by the

registerBoardEx function.

 hE short: event counter handle as issued by the
TCsetEventCounter function.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetEventCounter

See Also TCgetEventCount

AMPDIO DRIVERS

Page 131

TCresetEventCounter

6.4.8 Frequency/Pulse Generation Functions

6.4.8.1 Send Monostable Pulse — TCsetMonoShot

Creates a single pulse of specified duration on the output of a timer/counter, using the timer’s
‘Hardware Re-triggerable One-Shot’ mode. In this mode, the timer output will go low for the
duration specified on the clock pulse following a gate trigger. Subsequent gate triggers will re-
trigger the pulse. See section 3.1.2 for more details on the Monostable application.

For cards without a Counter Connections Register block (e.g. PC214E) an input clock
frequency of 1 MHz is assumed (4 MHz is assumed for PC27E).

For cards with a Counter Connections Register block, the highest internal clock frequency in 1
kHz, 10 kHz, 100 kHz, 1 MHz or 10 MHz that will support the specified duration is used.

i = TCsetMonoShot (h, chip, chan, duration)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2).

 duration float: pulse duration time, in seconds.

The minimum duration is 1 s divided by the
highest available input clock frequency. For
cards with clock connection registers, the
minimum duration is 100 ns.

The maximum duration is 65536 s divided by
the lowest available input clock frequency. For
cards with clock connection registers, the
maximum duration is 65.536 s.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCsetGate

AMPDIO DRIVERS

Page 132

TCfreeResource

6.4.8.2 Generate Astable Multivibrator Waveform — TCsetAstable

Generates a clock signal of specified frequency and mark-to-space ratio. This is implemented
on two counters, both in mode 1 (digital one-shot). One counter counts the mark time and the
other counts the space time. The outputs of each counter/timer control the gate of the other,
so that when the mark times-out, the space counter is triggered and vice versa. N.B. the user
must connect each counter’s gate to the other’s output on the user connector SK1. See
section 3.1.3 for more details on the Astable application.

For cards without a Counter Connections Register block (e.g. PC214E) an input clock
frequency of 1 MHz is assumed (4 MHz is assumed for PC27E).

For cards with a Counter Connections Register block, the highest internal clock frequency in 1
kHz, 10 kHz, 100 kHz, 1 MHz or 10 MHz that will support the required mark or space duration
is used and chosen individually for each counter.

i = TCsetAstable (h, chip, chan, chipS, chanS, freq, msratio)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2).

 chipS short: address offset of secondary
timer/counter chip. One of the following pre-
defined constants may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chanS short: secondary timer/counter channel

number within the chip (0, 1 or 2).

 freq float: desired frequency, in Hertz.

The frequency must be at least 0.005 Hz.

 msratio float: desired mark-to-space ratio, defined as
(mark time/period), i.e. 0 is D.C. 0V, 1 is D.C.
5V, 0.5 is symmetrical square wave, i.e. high

AMPDIO DRIVERS

Page 133

for 1 and low for 1.

Returns short: Handle to the astable multivibrator (>= 0). Use this handle to call
the TCfreeAstable function when finished, in order to free up the
counter/timers for re-use.

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCfreeAstable

6.4.8.3 Free-up Astable Multivibrator Counter/Timers — TCfreeAstable

Frees the two timer counters used for an astable multivibrator, as set-up by the TCsetAstable
function.

i = TCfreeAstable (h, hA)

where h short: board handle as issued by the

registerBoard function.

 hA short: astable multivibrator handle as issued
by the TCsetAstable function

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetAstable

See Also

6.4.8.4 Generate a Frequency — TCgenerateFreq

Generates a square wave of specified frequency on a single timer/counter. See section 3.1.6
for more details on the Frequency Generation application.

For cards without a Counter Connections Register block (e.g. PC214E) an input clock
frequency of 1 MHz is assumed (4 MHz is assumed for PC27E).

For cards with a Counter Connections Register block, the highest internal clock frequency in 1
kHz, 10 kHz, 100 kHz, 1 MHz or 10 MHz that will support the desired output frequency is
chosen.

i = TCgenerateFreq (h, chip, chan, freq)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of timer/counter chip.
One of the following pre-defined constants may

AMPDIO DRIVERS

Page 134

be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2).

 freq float: desired frequency in Hertz.

The frequency must be at least 0.01 Hz.

The maximum frequency is the highest
available internal clock frequency divided by 2.
For cards with clock connection registers, this
is 5000000 Hz.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRRANGE

Prior Calls registerBoardEx

See Also TCgenerateAccFreq
TCgeneratePulse

6.4.8.5 Generate an Accurate Frequency — TCgenerateAccFreq

Generates a square wave of specified frequency accurate to 0.1% using two cascaded
timer/counters. See section 3.1.6 for more details on the Frequency Generation application.

For cards without a Counter Connections Register block (e.g. PC214E) an input clock
frequency of 1 MHz is assumed (4 MHz is assumed for PC27E). This affects the accuracy.

For cards with a Counter Connections Register block an input clock frequency of 10 MHz is
used.

The TCfreeResource function should be used to free up the timer/counter channels for use by
other functions.

i = TCgenerateAccFreq (h, chip, chan, freq)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of timer/counter chip #2.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8

AMPDIO DRIVERS

Page 135

Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2). Another timer/counter (chan –
1) will be used by this function. This
timer/counter may be on the previous chip.

 freq float: desired frequency in Hertz.

The frequency must be at least 0.002328 Hz.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRRANGE

Prior Calls registerBoardEx

See Also TCgenerateFreq
TCfreeResource

6.4.8.6 Generate a Pulse — TCgeneratePulse

Generates a negative-going pulse at a specified frequency on a single timer/counter. The
pulse width is the period of the timer/counter clock input, which may be hard-wired or
software-configured, depending on the card.

SUPPORTED IN VERSION 4.00 ONWARDS.

For cards without a Counter Connections Register block (e.g. PC214E) an input clock
frequency of 1 MHz is assumed (4 MHz is assumed for PC27E).

For cards with a Counter Connections Register block, the highest internal clock frequency in 1
kHz, 10 kHz, 100 kHz, 1 MHz or 10 MHz that will support the desired output frequency is
chosen.

i = TCgeneratePulse (h, chip, chan, freq)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2).

AMPDIO DRIVERS

Page 136

 freq float: desired frequency in Hertz.

The frequency must be at least 0.01 Hz.

The maximum frequency is the highest
available internal clock frequency divided by 2.
For cards with clock connection registers, this
is 5000000 Hz.

For cards with clock connection registers, the
internal input clock frequency is set to the
highest of 1 kHz, 10 kHz, 100 kHz, 1 MHz or
10 Mhz that is no more than the desired
frequency multiplied by 65536.

The pulse width is 1 s divided by the internal
input clock frequency.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRRANGE

Prior Calls registerBoardEx

See Also TCgenerateFreq

6.4.8.7 Set up a Periodic Pulse Train Generator — TCsetPeriodicPulseTrain

Sets up a periodic pulse train on the specified timer channel. It sets up a hardware-
retriggerable one-shot on another timer channel to set the duration of the pulse train and sets
up a periodic rate generator on a third timer channel (the 'train' channel) to retrigger the one-
shot periodically.

SUPPORTED IN VERSION 4.32 ONWARDS.

The 'one-shot' channel is offset by -2 from the specified 'pulse' channel. The 'train' channel is
offset by -2 from the 'one-shot' channel. All the timer channels on all timer chips are grouped
together to determine a negative offset channel, so this may be on the next lower timer chip. If
there is no next lower timer chip, a wraparound to the highest timer chip will be used to
determine the offset channel.

If the board lacks clock connection and gate connection registers, the clock sources must be
wired up manually. The output of the 'one-shot' channel must be inverted and wired up
manually to the gate input of the 'pulse' channel. The output of the 'train' channel must be
wired up manually to the gate input of the 'one-shot' channel.

For PC214E: Timer Z1 channel 0 provides an inverted output on connector SK1 so this is best
used as the 'one-shot' channel, using Z1 channel 2 as the 'pulse' channel and Z1 channel 1 as
the 'train' channel. Wire Ctr Z1 /OUT0 O/P (pin 54) to Ctr Z1 GAT2 I/P (pin 75), wire Ctr Z1
OUT1 O/P (pin 55) to Ctr Z1 GAT0 I/P (pin 73), set J2 to the 'one-shot' clock source, set J3 to
the 'train' clock source and set J4 to the 'pulse' clock source. The pulse train output is on Ctr
Z1 OUT2 O/P (pin 17).

i = TCsetPeriodicPulseTrain (h, pulseChip, pulseChan, pulseClock,
pulseCount, pulseShape, oneshotClock, oneshotTime, trainClock,
trainGate, trainFreq)

AMPDIO DRIVERS

Page 137

where h short: board handle as issued by the
registerBoardEx function.

 pulseChip short: address offset of timer/counter chip for
the pulse generator. One of the following pre-
defined constants may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 pulseChan short: timer/counter channel number within the

chip for the pulse generator (0, 1 or 2). Two
other timer/counter channels (pulseChan-2 and
pulseChan-4) will also be used. These
timer/counter channels may be on previous
chips or wrap around to the highest chips.

 pulseClock short: clock source for the pulse generator.
One of the following pre-defined constants may
be used, or use -1 to choose a value
automatically for boards with clock connection
registers:

-1 (choose automatically)
CLK_10MHZ = 1 (fixed 10 MHz clock)
CLK_1MHZ = 2 (fixed 1 MHz clock)
CLK_100KHZ = 3 (fixed 100 kHz clock)
CLK_10KHZ = 4 (fixed 10 kHz clock)
CLK_1KHZ = 5 (fixed 1 kHz clock)

 pulseCount short: number of pulses to output in each train.

 pulseShape short: shape of pulses:

0 (negative-going for 1 clock period)
1 (negative-going square pulses)

 oneshotClock short: clock source for the one-shot train

duration. One of the following pre-defined
constants may be used, or use -1 to choose a
value automatically for boards with clock
connection registers:

-1 (choose automatically)
CLK_10MHZ = 1 (fixed 10 MHz clock)
CLK_1MHZ = 2 (fixed 1 MHz clock)
CLK_100KHZ = 3 (fixed 100 kHz clock)
CLK_10KHZ = 4 (fixed 10 kHz clock)
CLK_1KHZ = 5 (fixed 1 kHz clock)

 oneshotTime double: desired one-shot train duration in

seconds.

 trainClock short: clock source for the train rate generator.
One of the following pre-defined constants may

AMPDIO DRIVERS

Page 138

be used, or use -1 to choose a value
automatically for boards with clock connection
registers:

-1 (choose automatically)
CLK_10MHZ = 1 (fixed 10 MHz clock)
CLK_1MHZ = 2 (fixed 1 MHz clock)
CLK_100KHZ = 3 (fixed 100 kHz clock)
CLK_10KHZ = 4 (fixed 10 kHz clock)
CLK_1KHZ = 5 (fixed 1 kHz clock)

 trainGate short: gate input source for the train rate

generator (if the board has gate connection
registers). One of the following pre-defined
constants may be used:

GAT_VCC = 0 (gate on/high)
GAT_GND = 1 (gate off/low)
GAT_EXT = 2 (gate from external

input)
GAT_OUTN_2 = 3 (gate from inverted

output of a timer
channel offset by -2
from train channel)

 trainFreq double: desired train frequency in Hz. The

actual frequency will be rounded to an integral
division of the train clock frequency.

Returns short: Handle to the periodic pulse train generator (>= 0). Use this handle
to call the TCfreePeriodicPulseTrain function when finished, in
order to free up the counter/timers for re-use.

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCfreePeriodicPulseTrain
TCchangePeriodicPulseTrainGate
TCchangePeriodicPulseTrainFreq
TCchangePeriodicPulseTrainCount
TCchangePeriodicPulseTrainDuration
TCcontrolPeriodicPulseTrain
TCsetRestrictedPulseTrain
TCsetOneShotPulseTrain

6.4.8.8 Change Periodic Pulse Train’s Gate Input — TCchangePeriodicPulseTrainGate

Sets the gate input for a periodic pulse train generator (as set up by TCsetPeriodicPulseTrain)
to the specified value if the board has timer/counter gate connection registers. For example, if
the periodic pulse train generator was set up with an initial gate value of GAT_GND to disable
pulse generation, then a gate value of GAC_VCC may be used here to begin generating
pulses at a later time.

SUPPORTED IN VERSION 4.32 ONWARDS.

AMPDIO DRIVERS

Page 139

Has no effect on boards without gate connection registers.

i = TCchangePeriodicPulseTrainGate (h, hPPT, trainGate)

where h short: board handle as issued by the

registerBoardEx function.

 hPPT short: periodic pulse train generator handle, as
issued by the TCsetPeriodicPulseTrain
function.

 trainGate short: gate input source for the train rate
generator (if the board has gate connection
registers). One of the following pre-defined
constants may be used:

GAT_VCC = 0 (gate on/high)
GAT_GND = 1 (gate off/low)
GAT_EXT = 2 (gate from external

input)
GAT_OUTN_2 = 3 (gate from inverted

output of a timer
channel offset by -2
from train channel)

Returns short: OK

or ERRHANDLE

ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetPeriodicPulseTrain

See Also TCfreePeriodicPulseTrain
TCchangePeriodicPulseTrainFreq
TCchangePeriodicPulseTrainCount
TCchangePeriodicPulseTrainDuration
TCcontrolPeriodicPulseTrain

6.4.8.9 Change Periodic Pulse Train’s Train Frequency — TCchangePeriodicPulseTrainFreq

Changes the train frequency for the periodic pulse train generator (as set up by
TCsetPeriodicPulseTrain) to the specified value.

SUPPORTED IN VERSION 4.32 ONWARDS.

i = TCchangePeriodicPulseTrainFreq (h, hPPT, trainFreq)

where h short: board handle as issued by the

registerBoardEx function.

 hPPT short: periodic pulse train generator handle, as
issued by the TCsetPeriodicPulseTrain
function.

 trainFreq double: desired train frequency in Hz. The
actual frequency will be rounded to an integral

AMPDIO DRIVERS

Page 140

division of the train clock frequency.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetPeriodicPulseTrain

See Also TCfreePeriodicPulseTrain
TCchangePeriodicPulseTrainGate
TCchangePeriodicPulseTrainCount
TCchangePeriodicPulseTrainDuration
TCcontrolPeriodicPulseTrain

6.4.8.10 Change Periodic Pulse Train’s Pulse Count — TCchangePeriodicPulseTrainCount

Changes the pulse count for the periodic pulse train generator (as set up by
TCsetPeriodicPulseTrain) to the specified value by altering the pulse frequency and the one-
shot duration. For a one-shot currently in progress, the wrong number of pulses may be
generated.

SUPPORTED IN VERSION 4.32 ONWARDS.

i = TCchangePeriodicPulseTrainCount (h, hPPT, pulseCount)

where h short: board handle as issued by the

registerBoardEx function.

 hPPT short: periodic pulse train generator handle, as
issued by the TCsetPeriodicPulseTrain
function.

 pulseCount short: number of pulses to output in each train.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetPeriodicPulseTrain

See Also TCfreePeriodicPulseTrain
TCchangePeriodicPulseTrainGate
TCchangePeriodicPulseTrainFreq
TCchangePeriodicPulseTrainDuration
TCcontrolPeriodicPulseTrain

6.4.8.11 Change Periodic Pulse Train’s Train Duration — TCchangePeriodicPulseTrainDuration

Changes the one-shot duration for the periodic pulse train generator (as set up by
TCsetPeriodicPulseTrain) to the specified value by altering the pulse frequency and the one-
shot duration. For a one-shot currently in progress, the wrong number of pulses may be

AMPDIO DRIVERS

Page 141

generated.

SUPPORTED IN VERSION 4.32 ONWARDS.

i = TCchangePeriodicPulseTrainDuration (h, hPPT, oneshotTime)

where h short: board handle as issued by the

registerBoardEx function.

 hPPT short: periodic pulse train generator handle, as
issued by the TCsetPeriodicPulseTrain
function.

 oneshotTime double: desired one-shot train duration in
seconds.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetPeriodicPulseTrain

See Also TCfreePeriodicPulseTrain
TCchangePeriodicPulseTrainGate
TCchangePeriodicPulseTrainFreq
TCchangePeriodicPulseTrainCount
TCcontrolPeriodicPulseTrain

6.4.8.12 Control a Periodic Pulse Train Generator's Timer Channels — TCcontrolPeriodicPulseTrain

Stops or starts the 'pulse' channel and/or the 'one-shot' channel and/or the 'train' channel of a
periodic pulse train generator. If the 'pulse' channel is stopped, its output will go high
immediately. If the 'one-shot' channel is stopped, the outputs of both the 'one-shot' channel
and the 'pulse' channel will go high immediately. If the 'train' channel is stopped, its output will
go high immediately but there will be no immediate effect on the 'one-shot' and 'pulse'
channels.

On setting up the periodic pulse train generator, all three channels are started. For pulses to
be generated, all channels must be started and the 'train' channel's gate input must be high. If
the 'train' channel is stopped or its gate input goes low during a pulse train, the current pulse
train will complete unless the 'one-shot' channel and/or the 'pulse' channel is stopped.

SUPPORTED IN VERSION 4.40 ONWARDS.

i = TCcontrolPeriodicPulseTrain (h, hPPT, runPulse, runOneshot,
runTrain)

where h short: board handle as issued by the

registerBoardEx function.

 hPPT short: periodic pulse train generator handle, as
issued by the TCsetPeriodicPulseTrain
function.

 runPulse short: controls the 'pulse' channel:

AMPDIO DRIVERS

Page 142

0 (stop the pulse channel [if started])
1 (start the pulse channel [if stopped])

 runOneshot short: controls the 'one-shot' channel:

0 (stop the one-shot channel [if started])
1 (start the one-shot channel [if stopped])

 runTrain short: controls the 'train' channel:

0 (stop the train channel [if started])
1 (start the train channel [if stopped])

Returns short: OK

or ERRHANDLE

ERRCHAN

Prior Calls registerBoardEx
TCsetPeriodicPulseTrain

See Also TCfreePeriodicPulseTrain
TCchangePeriodicPulseTrainGate
TCchangePeriodicPulseTrainFreq
TCchangePeriodicPulseTrainCount
TCchangePeriodicPulseTrainDuration

6.4.8.13 Free a Periodic Pulse Train Generator — TCfreePeriodicPulseTrain

Frees resources used by a periodic pulse train generator as set up by
TCsetPeriodicPulseTrain.

SUPPORTED IN VERSION 4.32 ONWARDS.

i = TCfreePeriodicPulseTrain (h, hPPT)

where h short: board handle as issued by the

registerBoardEx function.

 hPPT short: periodic pulse train generator handle, as
issued by the TCsetPeriodicPulseTrain
function.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetPeriodicPulseTrain

See Also TCchangePeriodicPulseTrainGate
TCchangePeriodicPulseTrainFreq
TCchangePeriodicPulseTrainCount
TCchangePeriodicPulseTrainDuration
TCcontrolPeriodicPulseTrain

AMPDIO DRIVERS

Page 143

6.4.8.14 Set up a Restricted Periodic Pulse Train Generator — TCsetRestrictedPulseTrain

Sets up a restricted periodic pulse train on the specified timer channel (the 'pulse' channel).
Each train of pulses is output within a restricted period equal to the clock period of a second
timer channel (the 'train' channel).

SUPPORTED IN VERSION 4.32 ONWARDS.

The 'train' channel is offset by -2 from the specified 'pulse' channel. If the 'pulse' channel is
timer channel 0 or 1 on a timer chip, the 'train' channel will be channel 1 or 2 on the next lower
timer chip or on the highest timer chip (due to wrap-around).

If the board lacks clock connection and gate connection registers, the clock sources must be
wired up manually and the output of the 'train' channel must be inverted and wired up
manually to the gate input of the 'pulse' channel.

For PC214E: Timer Z1 channel 0 provides an inverted output on connector SK1 so this is best
used as the 'train' channel, using Z1 channel 2 as the 'pulse' channel. Wire Ctr Z1 /OUT0 O/P
(pin 54) to Ctr Z1 GAT2 I/P (pin 75), set J2 to the 'train' clock source and set J4 to the 'pulse'
clock source. The pulse train output is on Ctr Z1 OUT2 O/P (pin 17).

i = TCsetRestrictedPulseTrain (h, pulseChip, pulseChan, pulseClock,
pulseCount, pulseShape, trainClock, trainGate, trainFreq)

where h short: board handle as issued by the

registerBoardEx function.

 pulseChip short: address offset of timer/counter chip for
the pulse generator. One of the following pre-
defined constants may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 pulseChan short: timer/counter channel number within the

chip for the pulse generator (0, 1 or 2). Another
timer/counter channel (pulseChan-2) will also
be used, and may be on the previous chip or
wrap around to the highest chip.

 pulseClock short: clock source for the pulse generator.
One of the following pre-defined constants may
be used, or use -1 to choose a value
automatically for boards with clock connection
registers:

-1 (choose automatically)
CLK_10MHZ = 1 (fixed 10 MHz clock)
CLK_1MHZ = 2 (fixed 1 MHz clock)
CLK_100KHZ = 3 (fixed 100 kHz clock)
CLK_10KHZ = 4 (fixed 10 kHz clock)
CLK_1KHZ = 5 (fixed 1 kHz clock)

 pulseCount short: number of pulses to output in each train.

AMPDIO DRIVERS

Page 144

 pulseShape short: shape of pulses:

0 (negative-going for 1 clock period)
1 (negative-going square pulses)

 trainClock short: clock source for the train rate generator.

One of the following pre-defined constants may
be used:

CLK_1MHZ = 2 (fixed 1 MHz clock)
CLK_100KHZ = 3 (fixed 100 kHz clock)
CLK_10KHZ = 4 (fixed 10 kHz clock)
CLK_1KHZ = 5 (fixed 1 kHz clock)

 trainGate short: gate input source for the train rate

generator (if the board has gate connection
registers). One of the following pre-defined
constants may be used:

GAT_VCC = 0 (gate on/high)
GAT_GND = 1 (gate off/low)
GAT_EXT = 2 (gate from external

input)
GAT_OUTN_2 = 3 (gate from inverted

output of a timer
channel offset by -2
from train channel)

 trainFreq double: desired train frequency in Hz. The

actual frequency will be rounded to an integral
division of the train clock frequency.

Returns short: Handle to the restricted periodic pulse train generator (>= 0)). Use
this handle to call the TCfreeRestrictedPulseTrain function when
finished, in order to free up the counter/timers for re-use.

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCfreeRestrictedPulseTrain
TCchangeRestrictedPulseTrainGate
TCchangeRestrictedPulseTrainFreq
TCchangeRestrictedPulseTrainCount
TCcontrolRestrictedPulseTrain
TCsetPeriodicPulseTrain

6.4.8.15 Change Restricted Periodic Pulse Train’s Gate Input — TCchangeRestrictedPulseTrainGate

Sets the gate input for a restricted periodic pulse train generator (as set up by
TCsetRestrictedPulseTrain) to the specified value if the board has timer/counter gate
connection registers. For example, if the pulse train generator was set up with an initial gate
value of GAT_GND to disable pulse generation, then a gate value of GAC_VCC may be used
here to begin generating pulses at a later time.

SUPPORTED IN VERSION 4.32 ONWARDS.

AMPDIO DRIVERS

Page 145

Has no effect on boards without gate connection registers.

i = TCchangeRestrictedPulseTrainGate (h, hRPT, trainGate)

where h short: board handle as issued by the

registerBoardEx function.

 hRPT short: restricted periodic pulse train generator
handle, as issued by the
TCsetRestrictedPulseTrain function.

 trainGate short: gate input source for the train rate
generator (if the board has gate connection
registers). One of the following pre-defined
constants may be used:

GAT_VCC = 0 (gate on/high)
GAT_GND = 1 (gate off/low)
GAT_EXT = 2 (gate from external

input)
GAT_OUTN_2 = 3 (gate from inverted

output of a timer
channel offset by -2
from train channel)

Returns short: OK

or ERRHANDLE

ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetRestrictedPulseTrain

See Also TCfreeRestrictedPulseTrain
TCchangeRestrictedPulseTrainFreq
TCchangeRestrictedPulseTrainCount
TCcontrolRestrictedPulseTrain

6.4.8.16 Change Restricted Periodic Pulse Train’s Frequency — TCchangeRestrictedPulseTrainFreq

Changes the frequency of trains for the restricted periodic pulse train generator (as set up by
TCsetRestrictedPulseTrain) to the specified value.

SUPPORTED IN VERSION 4.32 ONWARDS.

i = TCchangeRestrictedPulseTrainFreq (h, hRPT, trainFreq)

where h short: board handle as issued by the

registerBoardEx function.

 hRPT short: restricted periodic pulse train generator
handle, as issued by the
TCsetRestrictedPulseTrain function.

 trainFreq double: desired train frequency in Hz. The
actual frequency will be rounded to an integral

AMPDIO DRIVERS

Page 146

division of the train clock frequency.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetRestrictedPulseTrain

See Also TCfreeRestrictedPulseTrain
TCchangeRestrictedPulseTrainGate
TCchangeRestrictedPulseTrainCount
TCcontrolRestrictedPulseTrain

6.4.8.17 Change Restricted Periodic Pulse Train’s Pulse Count — TCchangeRestrictedPulseTrainCount

Changes the pulse count for the restricted periodic pulse train generator (as set up by
TCsetRestrictedPulseTrain) to the specified value by altering the pulse frequency. For a pulse
train currently in progress, the wrong number of pulses may be generated.

SUPPORTED IN VERSION 4.32 ONWARDS.

i = TCchangeRestrictedPulseTrainCount (h, hRPT, pulseCount)

where h short: board handle as issued by the

registerBoardEx function.

 hRPT short: restricted periodic pulse train generator
handle, as issued by the
TCsetRestrictedPulseTrain function.

 pulseCount short: number of pulses to output in each train.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetRestrictedPulseTrain

See Also TCfreeRestrictedPulseTrain
TCchangeRestrictedPulseTrainGate
TCchangeRestrictedPulseTrainFreq
TCcontrolRestrictedPulseTrain

6.4.8.18 Control a Restricted Periodic Pulse Train Generator's Timer Channels —
TCcontrolRestrictedPulseTrain

Stops or starts the 'pulse' channel and/or the 'train' channel of the restricted periodic pulse
train generator. If the 'pulse' channel is stopped, its output will go high immediately. If the
'train' channel is stopped, the outputs of both the 'train' channel and the 'pulse' channel will go
high immediately.

AMPDIO DRIVERS

Page 147

On setting up the restricted periodic pulse train generator, both channels are started. For
pulses to be generated, both channels must be started and the 'train' channel's gate input
must be high.

SUPPORTED IN VERSION 4.40 ONWARDS.

i = TCcontrolRestrictedPulseTrain (h, hRPT, runPulse, runTrain)

where h short: board handle as issued by the

registerBoardEx function.

 hPPT short: periodic pulse train generator handle, as
issued by the TCsetPeriodicPulseTrain
function.

 runPulse short: controls the 'pulse' channel:

0 (stop the pulse channel [if started])
1 (start the pulse channel [if stopped])

 runTrain short: controls the 'train' channel:

0 (stop the train channel [if started])
1 (start the train channel [if stopped])

Returns short: OK

or ERRHANDLE

ERRCHAN

Prior Calls registerBoardEx
TCsetRestrictedPulseTrain

See Also TCfreeRestrictedPulseTrain
TCchangeRestrictedPulseTrainGate
TCchangeRestrictedPulseTrainFreq
TCchangeRestrictedPulseTrainCount

6.4.8.19 Free a Restricted Periodic Pulse Train Generator — TCfreeRestrictedPulseTrain

Frees resources used by a restricted periodic pulse train generator as set up by
TCsetRestrictedPulseTrain.

SUPPORTED IN VERSION 4.32 ONWARDS.

i = TCfreeRestrictedPulseTrain (h, hRPT)

where h short: board handle as issued by the

registerBoardEx function.

 hRPT short: restricted periodic pulse train generator
handle, as issued by the
TCsetRestrictedPulseTrain function.

Returns short: OK

or ERRHANDLE
ERRCHAN

AMPDIO DRIVERS

Page 148

Prior Calls registerBoardEx

TCsetRestrictedPulseTrain

See Also TCchangeRestrictedPulseTrainGate
TCchangeRestrictedPulseTrainFreq
TCchangeRestrictedPulseTrainCount
TCcontrolRestrictedPulseTrain

6.4.8.20 Set up a Hardware-Triggered One-Shot Pulse Train Generator — TCsetOneShotPulseTrain

Sets up a pulse train within a hardware-retriggerable one-shot period. The pulses are
generated on the specified 'pulse' chip and channel. The hardware-retriggerable one-shot
period is generated by the 'one-shot' channel. The 'one-shot' channel has a trigger input (on
the timer channel's gate input). A low-to-high transition on the trigger input will trigger (or
retrigger) the one-shot period.

SUPPORTED IN VERSION 4.32 ONWARDS.

The 'one-shot' channel is offset by -2 from the specified 'pulse' channel. If the 'pulse' channel
is timer channel 0 or 1 on a timer chip, the 'one-shot' channel will be channel 1 or 2 on the
next lower timer chip or on the highest timer chip.

If the board lacks clock connection and gate connection registers, the clock sources must be
wired up manually and the output of the 'one-shot' channel must be inverted and wired up
manually to the gate input of the 'pulse' channel. Also, the one-shot trigger input must be
wired up manually.

If a software trigger is desired for the one-shot, this may be accomplished by controlling the
trigger input directly if the board has gate connection registers, or by connecting the trigger
input to a digital output that is settable by software.

For PC214E: Timer Z1 channel 0 provides an inverted output on connector SK1 so this is best
used as the 'one-shot' channel, using Z1 channel 2 as the 'pulse' channel. Wire Ctr Z1 /OUT0
O/P (pin 54) to Ctr Z1 GAT2 I/P (pin 75), set J2 to the 'one-shot' clock source and set J4 to
the 'pulse' clock source. The pulse train output is on Ctr Z1 OUT2 O/P (pin 17) and the trigger
input is on Ctr Z1 GAT0 I/P (pin 73).

i = TCsetOneShotPulseTrain (h, pulseChip, pulseChan, pulseClock,
pulseCount, pulseShape, oneshotClock, oneshotTrigger, oneshotTime)

where h short: board handle as issued by the

registerBoardEx function.

 pulseChip short: address offset of timer/counter chip for
the pulse generator. One of the following pre-
defined constants may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 pulseChan short: timer/counter channel number within the

chip for the pulse generator (0, 1 or 2). Another
timer/counter channel (pulseChan-2) will also

AMPDIO DRIVERS

Page 149

be used, and may be on the previous chip or
wrap around to the highest chip.

 pulseClock short: clock source for the pulse generator.
One of the following pre-defined constants may
be used, or use -1 to choose a value
automatically for boards with clock connection
registers:

-1 (choose automatically)
CLK_10MHZ = 1 (fixed 10 MHz clock)
CLK_1MHZ = 2 (fixed 1 MHz clock)
CLK_100KHZ = 3 (fixed 100 kHz clock)
CLK_10KHZ = 4 (fixed 10 kHz clock)
CLK_1KHZ = 5 (fixed 1 kHz clock)

 pulseCount short: number of pulses to output in each train.

 pulseShape short: shape of pulses:

0 (negative-going for 1 clock period)
1 (negative-going square pulses)

 oneshotClock short: clock source for the one-shot train

duration. One of the following pre-defined
constants may be used, or use -1 to choose a
value automatically for boards with clock
connection registers:

-1 (choose automatically)
CLK_10MHZ = 1 (fixed 10 MHz clock)
CLK_1MHZ = 2 (fixed 1 MHz clock)
CLK_100KHZ = 3 (fixed 100 kHz clock)
CLK_10KHZ = 4 (fixed 10 kHz clock)
CLK_1KHZ = 5 (fixed 1 kHz clock)

 oneshotTrigger short: trigger input setting for the hardware-

retriggerable one-shot. One of the following
pre-defined constants may be used:

GAT_VCC = 0 (trigger input high)
GAT_GND = 1 (trigger input low)
GAT_EXT = 2 (trigger from external

gate input)
GAT_OUTN_2 = 3 (trigger from inverted

output of a timer
channel offset by -2
from the one-shot
channel)

 oneshotTime double: desired one-shot train duration in

seconds.

Returns short: Handle to the one-shot pulse train generator (>= 0). Use this
handle to call the TCfreeOneShotPulseTrain function when
finished, in order to free up the counter/timers for re-use.

or ERRHANDLE
ERRCHAN

AMPDIO DRIVERS

Page 150

ERRDATA

Prior Calls registerBoardEx

See Also TCfreeOneShotPulseTrain
TCchangeOneShotPulseTrainTrigger
TCchangeOneShotPulseTrainCount
TCchangeOneShotPulseTrainDuration
TCcontrolOneShotPulseTrain
TCsetPeriodicPulseTrain

6.4.8.21 Change One-Shot Pulse Train’s Trigger Input — TCchangeOneShotPulseTrainTrigger

Sets the trigger input for a hardware-retriggerable one-shot pulse train generator (as set up by
TCsetOneShotPulseTrain) to the specified value if the board has counter timer gate
connection registers.

SUPPORTED IN VERSION 4.32 ONWARDS.

Has no effect on boards without gate connection registers.

i = TCchangeOneShotPulseTrainTrigger (h, hOSPT, oneshotTrigger)

where h short: board handle as issued by the

registerBoardEx function.

 hOSPT short: one-shot pulse train generator handle,
as issued by the TCsetOneShotPulseTrain
function.

 oneshotTrigger short: trigger input setting for the hardware-
retriggerable one-shot. One of the following
pre-defined constants may be used:

GAT_VCC = 0 (trigger input high)
GAT_GND = 1 (trigger input low)
GAT_EXT = 2 (trigger from external

gate input)
GAT_OUTN_2 = 3 (trigger from inverted

output of a timer
channel offset by -2
from the one-shot
channel)

Returns short: OK

or ERRHANDLE

ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetOneShotPulseTrain

See Also TCfreeOneShotPulseTrain
TCchangeOneShotPulseTrainCount
TCchangeOneShotPulseTrainDuration
TCcontrolOneShotPulseTrain

AMPDIO DRIVERS

Page 151

6.4.8.22 Change One-Shot Pulse Train’s Pulse Count — TCchangeOneShotPulseTrainCount

Changes the pulse count for the hardware-retriggerable one-shot pulse train generator (as set
up by TCsetOneShotPulseTrain) to the specified value by altering the pulse frequency and the
one-shot duration. For a one-shot currently in progress, the wrong number of pulses may be
generated.

SUPPORTED IN VERSION 4.32 ONWARDS.

i = TCchangeOneShotPulseTrainCount (h, hOSPT, pulseCount)

where h short: board handle as issued by the

registerBoardEx function.

 hOSPT short: one-shot pulse train generator handle,
as issued by the TCsetOneShotPulseTrain
function.

 pulseCount short: number of pulses to output in each train.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetOneShotPulseTrain

See Also TCfreeOneShotPulseTrain
TCchangeOneShotPulseTrainTrigger
TCchangeOneShotPulseTrainDuration
TCcontrolOneShotPulseTrain

6.4.8.23 Change One-Shot Pulse Train’s Train Duration — TCchangeOneShotPulseTrainDuration

Changes the one-shot duration for the hardware-retriggerable one-shot pulse train generator
(as set up by TCsetOneShotPulseTrain) to the specified value by altering the pulse frequency
and the one-shot duration. For a one-shot currently in progress, the wrong number of pulses
may be generated.

SUPPORTED IN VERSION 4.32 ONWARDS.

i = TCchangeOneShotPulseTrainDuration (h, hOSPT, oneshotTime)

where h short: board handle as issued by the

registerBoardEx function.

 hOSPT short: one-shot pulse train generator handle,
as issued by the TCsetOneShotPulseTrain
function.

 oneshotTime double: desired one-shot train duration in
seconds.

Returns short: OK

or ERRHANDLE

AMPDIO DRIVERS

Page 152

ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetOneShotPulseTrain

See Also TCfreeOneShotPulseTrain
TCchangeOneShotPulseTrainTrigger
TCchangeOneShotPulseTrainCount
TCcontrolOneShotPulseTrain

6.4.8.24 Control a Hardware-Triggered One-Shot Pulse Train Generator's Timer Channels —
TCcontrolOneShotPulseTrain

Stops or starts the 'pulse' channel and/or the 'one-shot' channel of the hardware retriggerable
one-shot pulse train generator. If the 'pulse' channel is stopped, its output will go high
immediately. If the 'one-shot' channel is stopped, the outputs of both the 'one-shot' channel
and the 'pulse' channel will go high immediately.

On setting up the hardware retriggerable one-shot pulse train generator, both channels are
started. For the pulse train generator to be armed, both channels must be started.

SUPPORTED IN VERSION 4.40 ONWARDS.

i = TCcontrolOneShotPulseTrain (h, hOSPT, runPulse, runOneshot)

where h short: board handle as issued by the

registerBoardEx function.

 hOSPT short: one-shot pulse train generator handle,
as issued by the TCsetOneShotPulseTrain
function.

 runPulse short: controls the 'pulse' channel:

0 (stop the pulse channel [if started])
1 (start the pulse channel [if stopped])

 runOneshot short: controls the 'one-shot' channel:

0 (stop the one-shot channel [if started])
1 (start the one-shot channel [if stopped])

Returns short: OK

or ERRHANDLE

ERRCHAN

Prior Calls registerBoardEx
TCsetOneShotPulseTrain

See Also TCfreeOneShotPulseTrain
TCchangeOneShotPulseTrainTrigger
TCchangeOneShotPulseTrainCount
TCchangeOneShotPulseTrainDuration

AMPDIO DRIVERS

Page 153

6.4.8.25 Free a Hardware-Triggered One-Shot Pulse Train Generator — TCfreeOneShotPulseTrain

Frees resources used by a hardware-retriggerable one-shot pulse train generator as set up by
TCsetOneShotPulseTrain.

SUPPORTED IN VERSION 4.32 ONWARDS.

i = TCfreeOneShotPulseTrain (h, hOSPT)

where h short: board handle as issued by the

registerBoardEx function.

 hOSPT short: one-shot pulse train generator handle,
as issued by the TCsetOneShotPulseTrain
function.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetOneShotPulseTrain

See Also TCchangeOneShotPulseTrainTrigger
TCchangeOneShotPulseTrainCount
TCchangeOneShotPulseTrainDuration
TCcontrolOneShotPulseTrain

6.4.8.26 Set up a Programmable Width Pulse Generator — TCsetPWPulse

Sets up a programmable width pulse generator. Generates a hardware-retriggerable low-
going pulse (mono-shot), where the 'low' period is a specified proportion of a specified period.
This is similar to TCsetMonoShot. The timer output will go low for dutyCycle * period seconds
following a rising edge trigger on the gate input. The timer uses an internal clock source either
specified explicitly or chosen automatically. The automatically chosen clock source depends
on the specified period.

N.B. Use TCsetGate to change the trigger source.

The programmable width pulse generator is also used internally by the pulse-width modulated
pulse train generator (see TCsetPWMTrain).

SUPPORTED IN VERSION 4.42 ONWARDS.

i = TCsetPWPulse (h, chip, chan, clock, duty, period)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of timer/counter chip for
the pulse generator. One of the following pre-
defined constants may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12

AMPDIO DRIVERS

Page 154

Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip for the pulse generator (0, 1 or 2).

 clock short: clock source for the pulse generator.
One of the following pre-defined constants may
be used, or use -1 to choose a value
automatically for boards with clock connection
registers:

-1 (choose automatically)
CLK_10MHZ = 1 (fixed 10 MHz clock)
CLK_1MHZ = 2 (fixed 1 MHz clock)
CLK_100KHZ = 3 (fixed 100 kHz clock)
CLK_10KHZ = 4 (fixed 10 kHz clock)
CLK_1KHZ = 5 (fixed 1 kHz clock)

For PC214E, a clock source of –1 is treated as
CLK_1MHZ irrespective of the actual jumper
settings.

 duty double:.proportion of the specified period to
spend with the output low, range 0 to 1.

 period double: assumed period between hardware
triggers, used to calculate the output low time.
This is used to choose the internal clock
source when the clock source is chosen
automatically. This is just an assumed period.
The function has no control over the actual
period between triggers.

The maximum period is 65536s divided by the
frequency of the clock source, e.g. for
CLK_1KHZ the maximum period is 65.356s. If
the clock source is chosen automatically and
the card has clock connection registers, the
maximum period is as for CLK_1KHZ, i.e.
65.536s.

Returns short: Handle to the programmable width pulse generator (>= 0). Use this
handle to call the TCfreePWPulse function when finished, in order
to free up the counter/timer for re-use.

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCfreePWPulse
TCchangePWPulseDutyCycle
TCchangePWPulsePeriod
TCcontrolPWPulse
TCsetMonoShot
TCsetPWMTrain

AMPDIO DRIVERS

Page 155

6.4.8.27 Change Programmable Width Pulse Generator's Duty Cycle — TCchangePWPulseDutyCycle

Changes the output low period of the programmable width pulse generator by specifying a
new duty cycle. This is the proportion of the previously specified period to spend with the
output low when the pulse generator is triggered. This function has no direct control over the
output high period.

SUPPORTED IN VERSION 4.42 ONWARDS.

i = TCchangePWPulseDutyCycle (h, hPWP, duty)

where h short: board handle as issued by the

registerBoardEx function.

 hPWP short: programmable width pulse generator
handle, as issued by the TCsetPWPulse
function.

 duty double:.proportion of the specified period to
spend with the output low, range 0 to 1.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetPWPulse

See Also TCfreePWPulse
TCchangePWPulsePeriod
TCcontrolPWPulse

6.4.8.28 Change Programmable Width Pulse Generator's Period — TCchangePWPulsePeriod

Changes the assumed period of the programmable width pulse generator, which affects the
length of the output low period when the pulse generator is triggered. There is no direct
control over the output high period.

Note that if the programmable width pulse generator was set up to use an automatically
chosen internal clock source, then a new internal clock source may be chosen by this
function. This will result in the programmable width pulse generator generating output pulses
of incorrect length while this function is running.

SUPPORTED IN VERSION 4.42 ONWARDS.

i = TCchangePWPulsePeriod (h, hPWP, period)

where h short: board handle as issued by the

registerBoardEx function.

 hPWP short: programmable width pulse generator
handle, as issued by the TCsetPWPulse
function.

 period double: assumed period between hardware
triggers, used to calculate the output low time.

AMPDIO DRIVERS

Page 156

This is used to choose the internal clock
source when the clock source is chosen
automatically. This is just an assumed period.
The function has no control over the actual
period between triggers.

The maximum period is 65536 s divided by the
frequency of the clock source, e.g. for
CLK_1KHZ the maximum period is 65.356 s. If
the clock source is chosen automatically and
the card has clock connection registers, the
maximum period is as for CLK_1KHZ, i.e.
65.536 s.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetPWPulse

See Also TCfreePWPulse
TCchangePWPulseDutyCycle
TCcontrolPWPulse

6.4.8.29 Control a Programmable Width Pulse Generator's Timer Channel — TCcontrolPWPulse

Stops or starts the programmable width pulse generator. When the pulse generator is
stopped, its output will go high immediately and it will no longer respond to triggers on its gate
input. When the pulse generator is started, it will respond to triggers on its gate input.

When initially set up by TCsetPWPulse, the pulse generator is started.

SUPPORTED IN VERSION 4.42 ONWARDS.

i = TCcontrolPWPulse (h, hPWP, run)

where h short: board handle as issued by the

registerBoardEx function.

 hPWP short: programmable width pulse generator
handle, as issued by the TCsetPWPulse
function.

 run short: controls the programmable width pulse
generator:

0 (stop the pulse channel [if started])
1 (start the pulse channel [if stopped])

Returns short: OK

or ERRHANDLE

ERRCHAN

Prior Calls registerBoardEx

AMPDIO DRIVERS

Page 157

TCsetPWPulse

See Also TCfreePWPulse
TCchangePWPulseDutyCycle
TCchangePWPulsePeriod

6.4.8.30 Free a Programmable Width Pulse Generator — TCfreePWPulse

Frees the timer counter resources used by a programmable width pulse generator, as
previously set up by TCsetPWPulse.

SUPPORTED IN VERSION 4.42 ONWARDS.

i = TCfreePWPulse (h, hPWP)

where h short: board handle as issued by the

registerBoardEx function.

 hPWP short: programmable width pulse generator
handle, as issued by the TCsetPWPulse
function.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetPWPulse

See Also TCchangePWPulseDutyCycle
TCchangePWPulsePeriod
TCcontrolPWPulse

6.4.8.31 Set up a Pulse Width Modulated Pulse Train Generator — TCsetPWMTrain

Sets up a continuous pulse-width modulated pulse train on the specified timer channel (the
'pulse' channel) using a hardware-retriggerable one-shot. It sets up a periodic rate generator
on a second timer channel (the 'train' channel) to retrigger the one-shot periodically.

SUPPORTED IN VERSION 4.42 ONWARDS.

The 'train' channel is offset by –2 from the 'pulse' channel. If the 'pulse' channel is timer
channel 0 or 1 on a timer chip, the 'train' channel will be channel 1 or 2 on the next lower timer
chip or on the highest timer chip.

If the board lacks clock connection and gate connection registers, the clock sources must be
wired up manually. The output of the 'train' channel must be wired up manually to the gate
input of the 'pulse' channel.

i = TCsetPWMTrain (h, pulseChip, pulseChan, pulseClock, trainClock,
trainGate, duty, trainFreq)

where h short: board handle as issued by the

registerBoardEx function.

 pulseChip short: address offset of timer/counter chip for

AMPDIO DRIVERS

Page 158

the pulse generator. One of the following pre-
defined constants may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 pulseChan short: timer/counter channel number within the

chip for the pulse generator (0, 1 or 2). Another
timer/counter channel (pulseChan-2) will also
be used, and may be on the previous chip or
wrap around to the highest chip.

 pulseClock short: clock source for the pulse generator.
One of the following pre-defined constants may
be used, or use -1 to choose a value
automatically for boards with clock connection
registers:

-1 (choose automatically)
CLK_10MHZ = 1 (fixed 10 MHz clock)
CLK_1MHZ = 2 (fixed 1 MHz clock)
CLK_100KHZ = 3 (fixed 100 kHz clock)
CLK_10KHZ = 4 (fixed 10 kHz clock)
CLK_1KHZ = 5 (fixed 1 kHz clock)

For PC214E, a clock source of –1 is treated as
CLK_1MHZ irrespective of the actual jumper
settings.

 trainClock short: clock source for the train rate generator.
One of the following pre-defined constants may
be used, or use -1 to choose a value
automatically for boards with clock connection
registers:

-1 (choose automatically)
CLK_10MHZ = 1 (fixed 10 MHz clock)
CLK_1MHZ = 2 (fixed 1 MHz clock)
CLK_100KHZ = 3 (fixed 100 kHz clock)
CLK_10KHZ = 4 (fixed 10 kHz clock)
CLK_1KHZ = 5 (fixed 1 kHz clock)

For PC214E, a clock source of –1 is treated as
CLK_1MHZ irrespective of the actual jumper
settings.

 trainGate short: gate input source for the train rate
generator (if the board has gate connection
registers). One of the following pre-defined
constants may be used:

GAT_VCC = 0 (gate on/high)
GAT_GND = 1 (gate off/low)
GAT_EXT = 2 (gate from external

input)

AMPDIO DRIVERS

Page 159

GAT_OUTN_2 = 3 (gate from inverted
output of a timer
channel offset by -2
from train channel)

 duty double:.proportion of the specified period to

spend with the output low, range 0 to 1.

 trainFreq double: desired train frequency in Hz. The
actual frequency will be rounded to an integral
division of the train clock frequency.

The minimum train frequency is the frequency
of the train clock source divided by 65536, or
the frequency of the pulse clock source divided
by 65536, whichever is the greatest. E.g. for
CLK_1KHZ the minimum train frequency is
about 0.01526 Hz. If both the train clock
source and pulse clock source are chosen
automatically, the minimum train frequency is
as for CLK_1KHZ, i.e. about 0.01526 Hz.

The maximum train frequency is the frequency
of the train clock source divided by 2, e.g. for
CLK_10MHZ the maximum train frequency is
5000000 Hz. If the train clock source is chosen
automatically, the maximum train frequency is
as for CLK_10MHZ, i.e. 5000000 Hz.

Returns short: Handle to the pulse width modulated pulse train generator (>= 0).
Use this handle to call the TCfreePWMTrain function when
finished, in order to free up the counter/timers for re-use.

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCfreePWMTrain
TCchangePWMTrainGate
TCchangePWMTrainFreq
TCchangePWMTrainDutyCycle
TCcontrolPWMTrain

6.4.8.32 Change Pulse Width Modulated Pulse Train Generator's Gate — TCchangePWMTrainGate

Sets the gate for the pulse width modulated pulse train generator to the specified value. For
example, if the PWM pulse train generator was set up with an initial gate value of GAT_GND
to disable pulse generation, then a gate value of GAC_VCC may be used here to begin
generating pulses at a later time.

SUPPORTED IN VERSION 4.42 ONWARDS.

Has no effect on boards without gate connection registers.

i = TCchangePWMTrainGate (h, hPWMT, trainGate)

AMPDIO DRIVERS

Page 160

where h short: board handle as issued by the
registerBoardEx function.

 hPWMT short: pulse width modulated pulse train
generator handle, as issued by the
TCsetPWMTrain function.

 trainGate short: gate input source for the train rate
generator (if the board has gate connection
registers). One of the following pre-defined
constants may be used:

GAT_VCC = 0 (gate on/high)
GAT_GND = 1 (gate off/low)
GAT_EXT = 2 (gate from external

input)
GAT_OUTN_2 = 3 (gate from inverted

output of a timer
channel offset by -2
from train channel)

Returns short: OK

or ERRHANDLE

ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetPWMTrain

See Also TCfreePWMTrain
TCchangePWMTrainFreq
TCchangePWMTrainDutyCycle
TCcontrolPWMTrain

6.4.8.33 Change Pulse Width Modulated Pulse Train Generator's Frequency — TCchangePWMTrainFreq

Changes the frequency and duration of the pulses for the pulse width modulated pulse train
generator, preserving the duty cycle.

SUPPORTED IN VERSION 4.42 ONWARDS.

If the 'pulse' channel uses an automatically chosen internal clock, there may be a glitch when
the frequency is changed.

i = TCchangePWMTrainFreq (h, hPWMT, trainFreq)

where h short: board handle as issued by the

registerBoardEx function.

 hPWMT short: pulse width modulated pulse train
generator handle, as issued by the
TCsetPWMTrain function.

 trainFreq double: desired train frequency in Hz. The
actual frequency will be rounded to an integral
division of the train clock frequency.

AMPDIO DRIVERS

Page 161

The minimum train frequency is the frequency
of the train clock source divided by 65536, or
the frequency of the pulse clock source divided
by 65536, whichever is the greatest. E.g. for
CLK_1KHZ the minimum train frequency is
about 0.01526 Hz. If both the train clock
source and pulse clock source are chosen
automatically, the minimum train frequency is
as for CLK_1KHZ, i.e. about 0.01526 Hz.

The maximum train frequency is the frequency
of the train clock source divided by 2, e.g. for
CLK_10MHZ the maximum train frequency is
5000000 Hz. If the train clock source is chosen
automatically, the maximum train frequency is
as for CLK_10MHZ, i.e. 5000000 Hz.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetPWMTrain

See Also TCfreePWMTrain
TCchangePWMTrainGate
TCchangePWMTrainDutyCycle
TCcontrolPWMTrain

6.4.8.34 Change Pulse Width Modulated Pulse Train Generator's Duty Cycle —
TCchangePWMTrainDutyCycle

Changes the duration of the pulses for the pulse width modulated pulse train generator,
preserving the frequency.

SUPPORTED IN VERSION 4.42 ONWARDS.

i = TCchangePWMTrainDutyCycle (h, hPWMT, duty)

where h short: board handle as issued by the

registerBoardEx function.

 hPWMT short: pulse width modulated pulse train
generator handle, as issued by the
TCsetPWMTrain function.

 duty double:.proportion of the specified period to
spend with the output low, range 0 to 1.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

AMPDIO DRIVERS

Page 162

Prior Calls registerBoardEx
TCsetPWMTrain

See Also TCfreePWMTrain
TCchangePWMTrainGate
TCchangePWMTrainFreq
TCcontrolPWMTrain

6.4.8.35 Control a Pulse Width Modulated Pulse Train Generator's Timer Channels — TCcontrolPWMTrain

Stops or starts the 'pulse' channel and/or the 'train' channel of the pulse-width modulated
pulse train generator. If the 'pulse' channel is stopped, its output will go high immediately. If
the 'train' channel is stopped, its output will go high immediately; if its output was low,this can
trigger a pulse on the 'pulse' channel.

On setting up the pulse width modulated pulse train generator, both channels are started. For
pulses to be generated, both channels must be started and the 'train' channel's gate input
must be high. If the 'train' channel is stopped or its gate input goes low, the current pulse will
complete unless the 'pulse' channel is stopped. Stopping the 'train' channel while its output is
low can trigger a pulse on the pulse channel unless the pulse channel is stopped.

SUPPORTED IN VERSION 4.42 ONWARDS.

i = TCcontrolPWMTrain (h, hPWMT, runPulse, runTrain)

where h short: board handle as issued by the

registerBoardEx function.

 hPWMT short: pulse width modulated pulse train
generator handle, as issued by the
TCsetPWMTrain function.

 runPulse short: controls the 'pulse' channel:

0 (stop the pulse channel [if started])
1 (start the pulse channel [if stopped])

 runTrain short: controls the 'train' channel:

0 (stop the train channel [if started])
1 (start the train channel [if stopped])

Returns short: OK

or ERRHANDLE

ERRCHAN

Prior Calls registerBoardEx
TCsetPWMTrain

See Also TCfreePWMTrain
TCchangePWMTrainGate
TCchangePWMTrainFreq
TCchangePWMTrainDutyCycle

AMPDIO DRIVERS

Page 163

6.4.8.36 Free a Pulse Width Modulated Pulse Train Generator — TCfreePWMTrain

Frees the timer counter resources used by a pulse width modulated pulse train generator, as
previously setup by TCsetPWMTrain.

SUPPORTED IN VERSION 4.42 ONWARDS.

i = TCfreePWMTrain (h, hPWMT)

where h short: board handle as issued by the

registerBoardEx function.

 hPWMT short: pulse width modulated pulse train
generator handle, as issued by the
TCsetPWMTrain function.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetPWMTrain

See Also TCchangePWMTrainGate
TCchangePWMTrainFreq
TCchangePWMTrainDutyCycle
TCcontrolPWMTrain

6.4.9 Frequency Input and Regeneration Functions

6.4.9.1 Measure Period of an External Signal — TCgetExtPeriod

Returns the period of an external signal, measured in microseconds. The external signal must
be connected to the clock input of the timer channel specified by the chip and chan
arguments. See section 3.1.5 for more details on the Frequency/Period Measurement
application.

i = TCgetExtPeriod (h, chip, chan, pper)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2). Another timer/counter (chan–2)
will also be used to provide the gate signal.

AMPDIO DRIVERS

Page 164

This second timer/counter may be on the
previous chip.

 pper pointer to float: Pointer to a 32-bit floating-
point variable into which the period result will
be placed.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRRANGE
ERRDATA

Prior Calls registerBoardEx

See Also TCgetExtFreq

6.4.9.2 Measure Frequency of an External Signal — TCgetExtFreq

Returns the frequency of an external signal, in Hertz. The external signal must be connected
to the clock input of the timer specified by the chip and chan arguments. See section 3.1.5 for
more details on the Frequency/Period Measurement application.

i = TCgetExtFreq (h, chip, chan, pfreq)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2). Another timer/counter (chan–2)
will also be used to provide the gate signal.
This second timer/counter may be on the
previous chip.

 pfreq pointer to float: Pointer to a 32-bit floating-
point variable into which the frequency result
will be placed.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRRANGE
ERRDATA

Prior Calls registerBoardEx

AMPDIO DRIVERS

Page 165

See Also TCgetExtPeriod

TCgetExtFreqRestricted

6.4.9.3 Measure Frequency of an External Signal Over a Fixed Period — TCgetExtFreqRestricted

Returns the frequency of an external signal, in Hertz, as measured over a specified period.
The external signal must be connected to the clock input of the timer specified by the chip and
chan arguments. See section 3.1.5 for more details on the Frequency/Period Measurement
application.

SUPPORTED IN VERSION 4.42 ONWARDS

i = TCgetExtFreqRestricted (h, chip, chan, width, pfreq, poverflow)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 chan short: timer/counter channel number within the

chip (0, 1 or 2). Another timer/counter (chan–2)
will also be used to provide the gate signal.
This second timer/counter may be on the
previous chip.

 width double: width of the measurement gate in
seconds.

 pfreq pointer to double: pointer to a 64-bit floating-
point variable into which the frequency result
will be placed.

 poverflow pointer to short: pointer to a variable used to
store an overflow indication. A 16-bit counter is
used to measure the frequency. This variable
indicates whether or not the counter
overflowed during the measurement period:

0 = not overflowed
1 = overflowed

Returns short: OK

or ERRHANDLE

ERRCHAN
ERRRANGE
ERRDATA

AMPDIO DRIVERS

Page 166

Prior Calls registerBoardEx

See Also TCgetExtFreq

6.4.9.4 Multiply an External Frequency — TCmultiplyFreq

Measures an external signal’s frequency, then generates another signal whose frequency is
the external frequency multiplied by a specified number. N.B. this function is not on-going, and
must be called at a regular interval to keep the generated frequency tracking the external
signal. Note that the output signal will be a square wave. See section 3.1.7 for more details on
the Frequency Multiplication application.

i = TCmultiplyFreq (h, ipChip, ipChan, opChip, opChan, factor)

where h short: board handle as issued by the

registerBoardEx function.

 ipChip short: address offset of the timer/counter chip
on which the input frequency will be measured.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 ipChan short: input timer/counter channel number

within the chip on which to perform the
frequency measurement (0, 1 or 2). Another
timer/counter (ipChan–2) will also be used to
provide the gate signal. This may be on the
previous chip.

 opChip short: address offset of the timer/counter chip
on which to generate the output frequency.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 opChan short: output timer/counter channel number

within the chip (0, 1 or 2).

 factor float: multiplication factor.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRRANGE

AMPDIO DRIVERS

Page 167

Prior Calls registerBoardEx

See Also TCdivideFreq

6.4.9.5 Divide an External Frequency — TCdivideFreq

Measures an external signal’s frequency, then generates another signal whose frequency is
the external frequency divided by a specified number. N.B. this function is not on-going, and
must be called at a regular interval to keep the generated frequency tracking the external
signal. Note the output signal will be a square wave.

i = TCdivideFreq (h, ipChip, ipChan, opChip, opChan, divisor)

where h short: board handle as issued by the

registerBoardEx function.

 ipChip short: address offset of the timer/counter chip
on which the input frequency will be measured.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 ipChan short: input timer/counter channel number

within the chip on which to perform the
frequency measurement (0, 1 or 2). Another
timer/counter (ipChan–2) will also be used to
provide the gate signal. This may be on the
previous chip.

 opChip short: address offset of the timer/counter chip
on which to generate the output frequency.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 opChan short: output timer/counter channel number

within the chip (0, 1 or 2).

 divisor float: division factor.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

AMPDIO DRIVERS

Page 168

Prior Calls registerBoardEx

See Also TCmultiplyFreq

6.4.10 Digitally Controlled Oscillator Functions

6.4.10.1 Prepare a Digitally-Controlled Oscillator — TCsetDCO

Implements a digitally controlled oscillator (DCO) which periodically reads a data value from a
digital input channel and generates an external frequency based on the value. The digital
input channel can be 1, 4, 8, 12, 16, or 24-bits wide, as specified by a previous call to function
DIOsetChanWidth. The digital channel must have already been set up as an input with a call
to function DIOsetMode. See section 3.4.2 for more details on the Digitally Controlled
Oscillator application.

i = TCsetDCO (h, diChip, diChan, opChip, opChan, udFreq, udChip,
MinF, MaxF)

where h short: board handle as issued by the

registerBoardEx function.

 diChip short: address offset of the digital input chip.
One of the following pre-defined constants may
be used:

PPIX = 0
PPIY = 8
PPIZ = 16

 diChan short: digital input channel.

 opChip short: address offset of the timer/counter chip

to be used for frequency output. One of the
following pre-defined constants may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 opChan short: frequency output timer/counter channel

number within the chip (0, 1 or 2).

 udFreq float: update frequency in Hertz.

 udChip short: address offset of a timer/counter chip of
which counter channel 1 will be used to
generate the update interrupts. One of the
following pre-defined constants may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12

AMPDIO DRIVERS

Page 169

Z1 = 16
Z2 = 20

 MinF float: output frequency corresponding to DI

data value 0.

 MaxF float.: frequency corresponding to the
maximum digital input data value, which itself
depends on the channel width specified in
DIOsetChanWidth.

Returns short: DCO handle (>= 0). Use this handle to call TCfreeDCO when
finished.

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCsetUserCO
enableInterrupts
TCfreeDCO

6.4.10.2 Prepare a User-Controlled Oscillator — TCsetUserCO

Implements a user-controlled oscillator that periodically calls a user-supplied function. The
user function may set the frequency of the oscillator using TCsetUserCOLevel.

i = TCsetUserCO (h, pfn, opChip, opChan, udFreq, udChip, MinF, MaxF)

where h short: board handle as issued by the

registerBoardEx function.

 pfn pointer to function (short, unsigned int,
unsigned long) returning void: A pointer to a
function implemented in the user’s code that
has the format of a TCUserCOCallback as
defined below.

 opChip short: address offset of the timer/counter chip
to be used for frequency output. One of the
following pre-defined constants may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 opChan short: frequency output timer/counter channel

number within the chip (0, 1 or 2).

 udFreq float: update frequency in Hertz.

 udChip short: address offset of a timer/counter chip of
which counter channel 1 will be used to

AMPDIO DRIVERS

Page 170

generate the update interrupts. One of the
following pre-defined constants may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

 MinF float: output frequency corresponding to user

value 0.

 MaxF float.: output frequency corresponding to user
value 2147483647 (7FFFFFFF16).

Returns short: User CO handle (>= 0). Use this handle to call TCfreeDCO when
finished.

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCUserCOCallback
enableInterrupts
TCfreeDCO

6.4.10.3 User Controlled Oscillator Callback — TCUserCOCallback

Function to be implemented in the user’s code. The user will need to pass a pointer to the
function (which has a user-supplied name) to TCsetUserCO. It must be declared as
‘CALLBACK’ . It is called following an update timer interrupt. This function can be used to
adjust the frequency output of the user-controlled oscillator using TCsetUserCOLevel.

TCUserCOCallback (h, hCO, count)

where h short: board handle as issued by the

registerBoardEx function.

 hCO short: handle of user controlled oscillator as
issued by the TCsetUserCO function.

 count unsigned long: counter value read from the
timer/counter channel used as the update
counter. This value is likely to be of no use
whatsoever.

Returns void.

Prior Calls registerBoardEx
TCsetUserCO
enableInterrupts

See Also TCsetUserCOLevel

AMPDIO DRIVERS

Page 171

6.4.10.4 Set User Controlled Oscillator Output Level — TCsetUserCOLevel

This function allows the user to set the frequency of the controlled oscillator declared using
TCsetUserCO. Provided so that the output frequency of the controlled oscillator can be set as
part of the user callback function; however, it can be called at any time.

i = TCsetUserCOLevel (h, hCO, value)

where h short: board handle as issued by the

registerBoardEx function.

 hCO short: handle of user controlled oscillator as
issued by the TCsetUserCO function.

 value unsigned long: value between 0 and
2147483647 (7FFFFFFF16) representing the
desired frequency.

Returns short: OK

or ERRHANDLE

Prior Calls registerBoardEx
TCsetUserCO

See Also TCUserCOCallback
TCfreeDCO

6.4.10.5 Free-up a DCO or User CO’s Timer/Counters — TCfreeDCO

Frees the timer/counter & DIO resources used by a DCO, or User CO, as previously set up by
the TCsetDCO or TCsetUserCO function. Call this function when you’ve finished using the
DCO or User CO.

i = TCfreeDCO (h, hO)

where h short: board handle as issued by the

registerBoardEx function.

 hO short: DCO handle or User CO handle, as
issued by the TCsetDCO or TCsetUserCO
function.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetDCO
TCsetUserCO

See Also disableInterrupts

AMPDIO DRIVERS

Page 172

6.4.11 Digital Input/Output Functions

6.4.11.1 Test if Digital I/O Chip is Free — DIOisAvailable

Checks if a particular Digital I/O (DIO) chip is available on a board. A DIO chip may not be
available for one of two reasons:
1. the DIO chip is not provided by the board specified, or
2. the DIO chip is being used by some other function.

i = DIOisAvailable (h, chip)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the DIO chip. One of
the following pre-defined constants may be
used:

PPIX = 0
PPIY = 8
PPIZ = 16

Returns short: 0 = DIO Chip NOT Available, 1 = Available

or ERRHANDLE

ERRCHAN

Prior Calls registerBoardEx

See Also

6.4.11.2 Configure a Digital I/O Port for Input or Output — DIOsetMode

Sets up a digital I/O port for basic input or output.

Note that all output ports on the chip will be set to logic level 0, including those not directly
configured by the function call. This is a feature of the 82C55 chip.

i = DIOsetMode (h, chip, port, isInput)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the DIO chip. One of
the following pre-defined constants may be
used:

PPIX = 0
PPIY = 8
PPIZ = 16

 port short: DIO port within the chip. Port C is split

into two 4-bit nibbles, which can be
programmed independently. One of the
following pre-defined constants may be used:

PORTA = 0

AMPDIO DRIVERS

Page 173

PORTB = 1
PORTC_L = 2
PORTC_U = 3

 isInput short: non-zero if port is to be set as input,

zero if port is to be set as output.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx

See Also DIOsetChanWidth
DIOsetData
DIOgetData
DIOgetMode

6.4.11.3 Check Digital I/O Port Direction — DIOgetMode

Indicates whether a digital I/O port is an input or an output.

SUPPORTED IN VERSION 4.40 ONWARDS.

i = DIOgetMode (h, chip, port, pIsInput)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the DIO chip. One of
the following pre-defined constants may be
used:

PPIX = 0
PPIY = 8
PPIZ = 16

 port short: DIO port within the chip. Port C is split

into two 4-bit nibbles, which can be
programmed independently. One of the
following pre-defined constants may be used:

PORTA = 0
PORTB = 1
PORTC_L = 2
PORTC_U = 3

 pIsInput pointer to short: pointer to a variable into

which a port direction value will be placed. The
port direction value is as follows:

0: output
1: input

Returns short: OK

or ERRHANDLE

AMPDIO DRIVERS

Page 174

ERRCHAN

Prior Calls registerBoardEx

See Also DIOsetMode

6.4.11.4 Re-define Channel Width within a Digital I/O Chip — DIOsetChanWidth

Redefines the number of bits per DIO channel to be used in subsequent calls to the
DIOsetData and DIOgetData functions. The default channel width is 8-bits, and this can be
changed to 1, 4, 8, 12, 16, or 24. After calling this function, the chan argument in the
DIOsetData and DIOgetData functions refers to the group of bits of width numBits, starting at
Port A bit 0. For a channel width of 12, port C-Upper forms the upper 4 bits of channel 0 and
port C-Lower forms the upper 4 bits of channel 1. Note that the three ports (A, B, C-Upper and
C-Lower) must be set up correctly for input or output accordingly by calling the DIOsetMode
function for each.

i = DIOsetChanWidth (h, chip, numBits)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the DIO chip. One of
the following pre-defined constants may be
used:

PPIX = 0
PPIY = 8
PPIZ = 16

 numBits short: bit width to be used in subsequent calls

to functions DIOsetData, DIOgetData and
TCsetDCO. Valid widths are 1, 4, 8, 12, 16, or
24.

numBits channels per chip
 1 24
 4 6
 8 3
12 2
16 1
24 1

Returns short: OK

or ERRHANDLE

ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also DIOsetMode
DIOsetData
DIOgetData

AMPDIO DRIVERS

Page 175

6.4.11.5 Send Digital Output Data — DIOsetData

Writes a data value to a DIO channel. It is assumed that the channel has already been set as
an output by a call to function DIOsetMode.

i = DIOsetData (h, chip, chan, data)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the DIO chip. One of
the following pre-defined constants may be
used:

PPIX = 0
PPIY = 8
PPIZ = 16

 chan short: DIO channel. Note the channel

numbering depends on the channel width as
set by DIOsetChanWidth (default is three 8-bit
channels).

 data long: digital data word.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
DIOsetMode
DIOsetChanWidth

See Also DIOgetData

6.4.11.6 Read Digital Input Data — DIOgetData

Reads a data value from a DIO channel. It is assumed that the channel has already been set
as an input by a call to function DIOsetMode.

i = DIOgetData (h, chip, chan, pdata)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the DIO chip. One of
the following pre-defined constants may be
used:

PPIX = 0
PPIY = 8
PPIZ = 16

 chan short: DIO channel. Note the channel

numbering depends on the channel width as
set by DIOsetChanWidth (default is three 8-bit
channels).

AMPDIO DRIVERS

Page 176

 pdata pointer to long: pointer to a long integer

variable into which the digital data word will be
placed.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
DIOsetMode
DIOsetChanWidth

See Also DIOsetData

6.4.11.7 Configure a Digital I/O Port Mode — DIOsetModeEx

Writes directly to the digital I/O port control register. The value written may be a mode-setting
command (bit 7 = 1) or a single bit set/reset command (bit 7 = 0).

SUPPORTED IN VERSION 2.00 ONWARDS.

Note that writing a mode-setting command (bit 7 = 1) causes all output ports on the chip to be
set to logic level 0 (except for certain PORT C bits in modes 1 and 2). This is a feature of the
82C55 chip.

i = DIOsetModeEx (h, chip, ctrl)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the DIO chip. One of
the following pre-defined constants may be
used:

PPIX = 0
PPIY = 8
PPIZ = 16

 ctrl short: value to write to PPI control port.

Returns short: OK

or ERRHANDLE

ERRCHAN

Prior Calls registerBoardEx

See Also DIOsetDataEx
DIOgetDataEx
DIOgetModeEx

6.4.11.8 Check a Digital I/O Port's Mode — DIOgetModeEx

Checks the last mode-setting command written to a digital I/O port's control register.

AMPDIO DRIVERS

Page 177

SUPPORTED IN VERSION 4.40 ONWARDS.

Note: if this is used with a hardware device driver prior to version 4.40, the function will get the
last mode-setting command or single bit set/reset command sent to the digital I/O port's
control register. To be on the safe side, the application should check that bit 7 of the returned
data is set to 1 before interpreting it as a mode value.

i = DIOgetModeEx (h, chip, pdata)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the DIO chip. One of
the following pre-defined constants may be
used:

PPIX = 0
PPIY = 8
PPIZ = 16

 pdata pointer to short: pointer to a short integer

variable into which the mode value will be
placed.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx

See Also DIOsetModeEx

6.4.11.9 Write to Digital Output Port — DIOsetDataEx

Writes a data value to a DIO port directly.

SUPPORTED IN VERSION 2.00 ONWARDS.

i = DIOsetDataEx (h, chip, port, data)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the DIO chip. One of
the following pre-defined constants may be
used:

PPIX = 0
PPIY = 8
PPIZ = 16

 port short. DIO Port, 0,1 or 2.

 data short: digital data value.

Returns short: OK

AMPDIO DRIVERS

Page 178

or ERRHANDLE

ERRCHAN

Prior Calls registerBoardEx
DIOsetMode
DIOsetModeEx

See Also DIOgetDataEx

6.4.11.10 Read Digital Input Data Port — DIOgetDataEx

Reads a data value from a DIO port.

SUPPORTED IN VERSION 2.00 ONWARDS.

i = DIOgetDataEx (h, chip, port, pdata)

where h short: board handle as issued by the

registerBoardEx function.

 chip short: address offset of the DIO chip. One of
the following pre-defined constants may be
used:

PPIX = 0
PPIY = 8
PPIZ = 16

 port short. DIO Port, 0,1 or 2.

 pdata pointer to short: pointer to a short integer

variable which the digital data value will be
placed.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
DIOsetMode
DIOsetModeEx

See Also DIOsetDataEx

6.4.12 Switch Scanner Matrix Functions

6.4.12.1 Set up a Switch Scanner Matrix — DIOsetSwitchMatrix

Sets up one, two or three 82C55 DIO chips as a switch matrix scanning device. The order of
the matrix specified can be 12 (for a 12 X 12 matrix scanning 144 switches, using PPIX), 24
(for a 24 X 24 matrix scanning 576 switches, using PPIX and PPIY), or 36 (for a 36 X 36
matrix scanning 1296 switches, using PPIX, PPIY and PPIZ). Group A (ports A and C-upper)
are set for output, to send test patterns to the matrix, and group B (port B and C-lower) are set
for input to read the switch status information back in. The user must ensure that the switch

AMPDIO DRIVERS

Page 179

array is wired correctly with suitable diodes and resistors, otherwise the board could get
damaged. See section 3.2.2 for details. Only one switch matrix implementation is available per
board.

i = DIOsetSwitchMatrix (h, order)

where h short: board handle as issued by the

registerBoardEx function
.

 order short: order of the matrix (12, 24 or 36).

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx

See Also DIOgetSwitchStatus
DIOfreeSwitchMatrix

6.4.12.2 Query Status of a Switch within the Scan Matrix — DIOgetSwitchStatus

Queries the status of a particular switch in the switch matrix set up by the DIOsetSwitchMatrix
function. The grid reference of the switch is given, and the function performs a test on that
switch and returns 1 for switch on (closed) or 0 for switch off (open).

i = DIOgetSwitchStatus (h, xcoord, ycoord)

where h short: board handle as issued by the

registerBoardEx function.

 xcoord short: X-co-ordinate of the position of the
switch in the matrix (origin is at port A0/B0 of
PPIX). Valid values should be in the range 0 –
order (as specified in DIOsetSwitchMatrix).

 ycoord short: Y-co-ordinate of the position of the
switch in the matrix (origin is at port A0/B0 of
PPIX). Valid values should be in the range 0 –
order (as specified in DIOsetSwitchMatrix).

Returns short: Zero, if switch was OFF (open). Non-zero if switch was ON
(closed).

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
DIOsetSwitchMatrix

See Also DIOfreeSwitchMatrix

6.4.12.3 Free-up the Digital I/O Chip(s) from a Switch Matrix — DIOfreeSwitchMatrix

Frees the DIO resources used by the switch matrix as set up in function DIOsetSwitchMatrix.

AMPDIO DRIVERS

Page 180

i = DIOfreeSwitchMatrix (h)

where h short: board handle as issued by the

registerBoardEx function.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
DIOsetSwitchMatrix

See Also

6.4.13 Basic User Interrupt Callbacks

6.4.13.1 Prepare a Basic User Interrupt — TCsetUserInterrupt

Used to register a callback function that will be called when a particular interrupt event occurs.

This does not support write events due to the interface to the user callback function. For write
events, use the buffered user interrupt functions instead.

If the interrupt source is enabled at the first and second levels, it will be activated. Interrupts
are initially disabled at the first level; use enableInterrupts to enable them. In versions of the
DLL up to version 4.39, all interrupt sources are initially disabled at the second level but are
automatically enabled by this interrupt set-up function. In versions of the DLL from 4.40
onwards, all valid interrupt sources are initially enabled at the second level but are no longer
automatically enabled by this interrupt set-up function. In either case, if interrupt sources have
not been explicitly disabled at the second level, there is no need to explicitly enable them.

i = TCsetUserInterrupt (h, pfn, wParam, Chip, ISRDATA, Chip1, Chan1,
Chip2, Chan2)

where h short: board handle as issued by the

registerBoardEx function.

 pfn pointer to function (short, unsigned int,
unsigned long) returning void: a pointer to a
function implemented in the user’s code that
has the format of a TCUserCCallback as
defined below.

 wParam unsigned integer: user-supplied value passed
to the user’s callback function.

 Chip short: determines interrupt source. The
interrupt source number from 0 to 5 multiplied
by 4 (0, 4, 8, 12, 16, 20). For timer/counter
interrupt or first interrupt line on a PPI chip it is
the address offset of the chip. For second
interrupt line on a PPI chip it is the address
offset of the PPI chip plus 4. Corresponds to bit
positions in interrupt enable register if the card
has one, otherwise use the address offset of
the interrupting chip. The following pre-defined

AMPDIO DRIVERS

Page 181

constants may be used:

X1 = 0 PPIXC0 = 0
X2 = 4 PPIXC3 = 4
Y1 = 8 PPIYC0 = 8
Y2 = 12 PPIYC3 = 12
Z1 = 16 PPIZC0 = 16
Z2 = 20 PPIZC3 = 20
PPIX = 0 PPIYC7 = 8
PPIY = 8 EXT0 = 0
PPIZ = 16 ADC0 = 0
 ADC2 = 8
 DAC2 = 8
 DAC4 = 16
 SATRIG = 12

 ISRDATA short: type of data to fetch on interrupt. The

following pre-defined constants may be used:

ISR_NODATA = –1
ISR_READ_16COUNT = 0
ISR_READ_16COUNTSTAT = 16
ISR_READ_32COUNT = 1
ISR_READ_PPIABC = 5
ISR_READ_PPIC = 6
ISR_PC27 = 7
ISR_READ_DATA8 = 8
ISR_READ_DATA16 = 9

 Chip1 short: address offset of the first timer/counter

or PPI chip to be interrogated:

X1 = 0 X2 = 4 PPIX = 0
Y1 = 8 Y2 = 12 PPIY = 8
Z1 = 16 Z2 = 20 PPIZ = 16

 Chan1 short: first timer/counter channel or PPI port to

interrogate (0, 1, 2).

 Chip2 short: address offset of the second
timer/counter or PPI chip to be interrogated:

X1 = 0 X2 = 4 PPIX = 0
Y1 = 8 Y2 = 12 PPIY = 8
Z1 = 16 Z2 = 20 PPIZ = 16

 Chan2 short: second timer/counter channel or PPI

port to interrogate (0, 1, 2)

Returns short: User Interrupt handle (>= 0). Use this to free the user interrupt with
TCfreeUserInterrupt when finished.

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCUserCCallback

AMPDIO DRIVERS

Page 182

TCfreeUserInterrupt
TCsetUserInterruptAIO
TCsetUserInterrupt2
TCsetBufferUserInterrupt
TCsetNCBufferUserInterrupt
enableInterrupts
disableInterrupts

6.4.13.2 Prepare a Basic User Interrupt for Analogue Input — TCsetUserInterruptAIO

Used to register a callback function that will be called when a particular interrupt event occurs.
This variant is used to support reading from analogue channels.

SUPPORTED IN VERSION 4.00 ONWARDS.

This does not support write events due to the interface to the user callback function. For write
events, use the buffered user interrupt functions instead.

If the interrupt source is enabled at the first and second levels, it will be activated. Interrupts
are initially disabled at the first level; use enableInterrupts to enable them. In versions of the
DLL up to version 4.39, all interrupt sources are initially disabled at the second level but are
automatically enabled by this interrupt set-up function. In versions of the DLL from 4.40
onwards, all valid interrupt sources are initially enabled at the second level but are no longer
automatically enabled by this interrupt set-up function. In either case, if interrupt sources have
not been explicitly disabled at the second level, there is no need to explicitly enable them.

i = TCsetUserInterruptAIO (h, pfn, wParam, Chip, ISRDATA, Group,
ChMask)

where h short: board handle as issued by the

registerBoardEx function.

 pfn pointer to function (short, unsigned int,
unsigned long) returning void: a pointer to a
function implemented in the user’s code that
has the format of a TCUserCCallback as
defined below.

 wParam unsigned integer: user-supplied value passed
to the user’s callback function.

 Chip short: determines interrupt source. The
interrupt source number from 0 to 5 multiplied
by 4 (0, 4, 8, 12, 16, 20). For timer/counter
interrupt or first interrupt line on a PPI chip it is
the address offset of the chip. For second
interrupt line on a PPI chip it is the address
offset of the PPI chip plus 4. Corresponds to bit
positions in interrupt enable register if the card
has one, otherwise use the address offset of
the interrupting chip. The following pre-defined
constants may be used:

X1 = 0 PPIXC0 = 0
X2 = 4 PPIXC3 = 4
Y1 = 8 PPIYC0 = 8
Y2 = 12 PPIYC3 = 12
Z1 = 16 PPIZC0 = 16

AMPDIO DRIVERS

Page 183

Z2 = 20 PPIZC3 = 20
PPIX = 0 PPIYC7 = 8
PPIY = 8 EXT0 = 0
PPIZ = 16 ADC0 = 0
 ADC2 = 8
 DAC2 = 8
 DAC4 = 16
 SATRIG = 12

 ISRDATA short: type of data to fetch on interrupt. The

following pre-defined constants may be used:

ISR_READ_ADCS = 10
ISR_READ_ADCSNOFIFO = 11
ISR_READ_ADCSFIFO = 12
ISR_READ_ADCSASAP = 15

 Group short: channel group of ADC channels to read.

 ChMask unsigned long: bit-mask of ADC channels to

read; LSB corresponds to channel 0; MSB
corresponds to channel 32; bit value ‘1’ means
the corresponding channel will be read.

N.B. channels will be read cyclically, one
channel each time.

Returns short: User Interrupt handle (>= 0). Use this to free the user interrupt with
TCfreeUserInterrupt when finished.

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCUserCCallback
TCfreeUserInterrupt
TCsetUserInterrupt
TCsetUserInterrupt2
TCsetBufferUserInterruptAIO
TCsetNCBufferUserInterruptAIO
enableInterrupts
disableInterrupts

6.4.13.3 Prepare a Basic User Interrupt for Miscellaneous Input — TCsetUserInterrupt2

Used to register a callback function that will be called when a particular interrupt event occurs.
This variant is reserved for future use.

SUPPORTED IN VERSION 4.00 ONWARDS.

This does not support write events due to the interface to the user callback function. For write
events, use the buffered user interrupt functions instead.

If the interrupt source is enabled at the first and second levels, it will be activated. Interrupts
are initially disabled at the first level; use enableInterrupts to enable them. In versions of the
DLL up to version 4.39, all interrupt sources are initially disabled at the second level but are

AMPDIO DRIVERS

Page 184

automatically enabled by this interrupt set-up function. In versions of the DLL from 4.40
onwards, all valid interrupt sources are initially enabled at the second level but are no longer
automatically enabled by this interrupt set-up function. In either case, if interrupt sources have
not been explicitly disabled at the second level, there is no need to explicitly enable them.

i = TCsetUserInterrupt2 (h, pfn, wParam, Chip, ISRDATA, Block1,
Port1, Block2, Port2)

where h short: board handle as issued by the

registerBoardEx function.

 pfn pointer to function (short, unsigned int,
unsigned long) returning void: a pointer to a
function implemented in the user’s code that
has the format of a TCUserCCallback as
defined below.

 wParam unsigned integer: user-supplied value passed
to the user’s callback function.

 Chip short: determines interrupt source. The
interrupt source number from 0 to 5 multiplied
by 4 (0, 4, 8, 12, 16, 20). For timer/counter
interrupt or first interrupt line on a PPI chip it is
the address offset of the chip. For second
interrupt line on a PPI chip it is the address
offset of the PPI chip plus 4. Corresponds to bit
positions in interrupt enable register if the card
has one, otherwise use the address offset of
the interrupting chip. The following pre-defined
constants may be used:

X1 = 0 PPIXC0 = 0
X2 = 4 PPIXC3 = 4
Y1 = 8 PPIYC0 = 8
Y2 = 12 PPIYC3 = 12
Z1 = 16 PPIZC0 = 16
Z2 = 20 PPIZC3 = 20
PPIX = 0 PPIYC7 = 8
PPIY = 8 EXT0 = 0
PPIZ = 16 ADC0 = 0
 ADC2 = 8
 DAC2 = 8
 DAC4 = 16
 SATRIG = 12

 ISRDATA short: type of data to fetch on interrupt.

 Block1 unsigned long: usage depends on ISRDATA

value.

 Port1 unsigned long: usage depends on ISRDATA
value.

 Block2 unsigned long: usage depends on ISRDATA
value.

 Port2 unsigned long: usage depends on ISRDATA
value.

AMPDIO DRIVERS

Page 185

Returns short: User Interrupt handle (>= 0). Use this to free the user interrupt with

TCfreeUserInterrupt when finished.

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCUserCCallback
TCfreeUserInterrupt
TCsetUserInterrupt
TCsetUserInterruptAIO
TCsetBufferUserInterrupt2
TCsetNCBufferUserInterrupt2
enableInterrupts
disableInterrupts

6.4.13.4 Basic User Interrupt Callback — TCUserCCallback

Function to be implemented in the user’s code. The user will need to pass a pointer to the
function (which has a user-supplied name) to TCsetUserInterrupt, TCsetUserInterruptAIO or
TCsetUserInterrupt2. It must be declared as ‘CALLBACK’. It is called following an interrupt.

TCUserCCallback (h, wParam, lParam)

where h short: board handle as issued by the

registerBoardEx function.

 wParam unsigned integer: value as supplied by user
to TCsetUserInterrupt function.

 lParam unsigned long: value read on interrupt.

Returns void.

Prior Calls registerBoardEx
TCsetUserInterrupt
TCsetUserInterruptAIO
TCsetUserInterrupt2
enableInterrupts

See Also

6.4.13.5 Free up a User Interrupt — TCfreeUserInterrupt

Frees up a user-interrupt set with TCsetUserInterrupt, TCsetUserInterruptAIO,
TCsetUserInterrupt2, TCsetBufferUserInterrupt, TCsetBufferUserInterruptAIO,
TCsetBufferUserInterrupt2, TCsetNCBufferUserInterrupt, TCsetNCBufferUserInterruptAIO,
TCsetNCBufferUserInterrupt2 functions.

i = TCfreeUserInterrupt (h, hUsrInt)

where h short: board handle as issued by the

registerBoardEx function.

AMPDIO DRIVERS

Page 186

 hUsrInt short: user interrupt handle as issued by user
interrupt set-up function.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetUserInterrupt
TCsetUserInterruptAIO
TCsetUserInterrupt2
TCsetBufferUserInterrupt
TCsetBufferUserInterruptAIO
TCsetBufferUserInterrupt2
TCsetNCBufferUserInterrupt
TCsetNCBufferUserInterruptAIO
TCsetNCBufferUserInterrupt2

See Also

6.4.14 Buffered User Interrupt Callbacks

6.4.14.1 Prepare a Buffered User Interrupt — TCsetBufferUserInterrupt

Used to register a callback function that will be called to process a buffers-worth of data that
has been read from or is to be written to the card over a number of interrupts.

SUPPORTED IN VERSION 3.00 ONWARDS

If the interrupt source is enabled at the first and second levels, it will be activated. Interrupts
are initially disabled at the first level; use enableInterrupts to enable them. In versions of the
DLL up to version 4.39, all interrupt sources are initially disabled at the second level but are
automatically enabled by this interrupt set-up function. In versions of the DLL from 4.40
onwards, all valid interrupt sources are initially enabled at the second level but are no longer
automatically enabled by this interrupt set-up function. In either case, if interrupt sources have
not been explicitly disabled at the second level, there is no need to explicitly enable them.

i = TCsetBufferUserInterrupt (h, pfn, wParam, Chip, SizeReq, fContin,
ISRDATA, Chip1, Chan1, Chip2, Chan2)

where h short: board handle as issued by the

registerBoardEx function.

 pfn pointer to function (short, unsigned int,
unsigned long, pointer to unsigned long)
returning void: a pointer to a function
implemented in the user’s code that has the
format of a TCUserCBCallback as defined
below.

 wParam unsigned integer: user-supplied value passed
to the user’s callback function.

 Chip short: determines interrupt source. The
interrupt source number from 0 to 5 multiplied
by 4 (0, 4, 8, 12, 16, 20). For timer/counter

AMPDIO DRIVERS

Page 187

interrupt or first interrupt line on a PPI chip it is
the address offset of the chip. For second
interrupt line on a PPI chip it is the address
offset of the PPI chip plus 4. Corresponds to bit
positions in interrupt enable register if the card
has one, otherwise use the address offset of
the interrupting chip. The following pre-defined
constants may be used:

X1 = 0 PPIXC0 = 0
X2 = 4 PPIXC3 = 4
Y1 = 8 PPIYC0 = 8
Y2 = 12 PPIYC3 = 12
Z1 = 16 PPIZC0 = 16
Z2 = 20 PPIZC3 = 20
PPIX = 0 PPIYC7 = 8
PPIY = 8 EXT0 = 0
PPIZ = 16 ADC0 = 0
 ADC2 = 8
 DAC2 = 8
 DAC4 = 16
 SATRIG = 12

 ISRDATA short: type of data transfer to be performed on

interrupt. The following pre-defined constants
may be used:

ISR_NODATA = –1
ISR_READ_16COUNT = 0
ISR_READ_16COUNTSTAT = 16
ISR_READ_32COUNT = 1
ISR_READ_32COUNTSTAT = 17
ISR_READ_PPIABC = 5
ISR_READ_PPIC = 6
ISR_PC27 = 7
ISR_READ_DATA8 = 8
ISR_READ_DATA16 = 9
ISR_READ_2PPIABC = 13
ISR_READ_3PPIABC = 14
ISR_WRITE_DATA8 = 32
ISR_WRITE_DATA16 = 33
ISR_WRITE_PPIABC = 34
ISR_WRITE_16COUNT = 39
ISR_WRITE_32COUNT = 40
ISR_WRITE_2PPIABC = 41
ISR_WRITE_3PPIABC = 42

 SizeReq unsigned long: number of data values in each

buffer.

 fContin short: use single buffer if zero, use double
buffering (continuous mode) if non-zero.

 Chip1 short: address offset of the first timer/counter
or PPI chip to be read or written:

X1 = 0 X2 = 4 PPIX = 0
Y1 = 8 Y2 = 12 PPIY = 8
Z1 = 16 Z2 = 20 PPIZ = 16

AMPDIO DRIVERS

Page 188

 Chan1 short: first timer/counter channel or PPI port to

read or write (0, 1, 2).

 Chip2 short: address offset of the second
timer/counter or PPI chip to be read or written:

X1 = 0 X2 = 4 PPIX = 0
Y1 = 8 Y2 = 12 PPIY = 8
Z1 = 16 Z2 = 20 PPIZ = 16

 Chan2 short: second timer/counter channel or PPI

port to read or write (0, 1, 2)

Returns short: User Interrupt handle (>= 0). Use this to free the user interrupt with
TCfreeUserInterrupt when finished.

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCUserCBCallback
TCfreeUserInterrupt
TCsetBufferUserInterruptAIO
TCsetBufferUserInterrupt2
TCsetUserInterrupt
TCsetNCBufferUserInterrupt
enableInterrupts
disableInterrupts

6.4.14.2 Prepare a Buffered User Interrupt for Analogue I/O — TCsetBufferUserInterruptAIO

Used to register a callback function that will be called to process a buffers-worth of data that
has been read from or is to be written to the card over a number of interrupts. This variant is
used to support reading from or writing to analogue channels.

SUPPORTED IN VERSION 4.00 ONWARDS.

If the interrupt source is enabled at the first and second levels, it will be activated. Interrupts
are initially disabled at the first level; use enableInterrupts to enable them. In versions of the
DLL up to version 4.39, all interrupt sources are initially disabled at the second level but are
automatically enabled by this interrupt set-up function. In versions of the DLL from 4.40
onwards, all valid interrupt sources are initially enabled at the second level but are no longer
automatically enabled by this interrupt set-up function. In either case, if interrupt sources have
not been explicitly disabled at the second level, there is no need to explicitly enable them.

i = TCsetBufferUserInterruptAIO (h, pfn, wParam, Chip, SizeReq,
fContin, ISRDATA, Group, ChMask)

where h short: board handle as issued by the

registerBoardEx function.

 pfn pointer to function (short, unsigned int,
unsigned long, pointer to unsigned long)
returning void: a pointer to a function
implemented in the user’s code that has the

AMPDIO DRIVERS

Page 189

format of a TCUserCBCallback as defined
below.

 wParam unsigned integer: user-supplied value passed
to the user’s callback function.

 Chip short: determines interrupt source. The
interrupt source number from 0 to 5 multiplied
by 4 (0, 4, 8, 12, 16, 20). For timer/counter
interrupt or first interrupt line on a PPI chip it is
the address offset of the chip. For second
interrupt line on a PPI chip it is the address
offset of the PPI chip plus 4. Corresponds to bit
positions in interrupt enable register if the card
has one, otherwise use the address offset of
the interrupting chip. The following pre-defined
constants may be used:

X1 = 0 PPIXC0 = 0
X2 = 4 PPIXC3 = 4
Y1 = 8 PPIYC0 = 8
Y2 = 12 PPIYC3 = 12
Z1 = 16 PPIZC0 = 16
Z2 = 20 PPIZC3 = 20
PPIX = 0 PPIYC7 = 8
PPIY = 8 EXT0 = 0
PPIZ = 16 ADC0 = 0
 ADC2 = 8
 DAC2 = 8
 DAC4 = 16
 SATRIG = 12

 SizeReq unsigned long: number of data values in each

buffer.

 fContin short: use single buffer if zero, use double
buffering (continuous mode) if non-zero.

 ISRDATA short: type of data transfer to be performed on
interrupt. The following pre-defined constants
may be used:

ISR_READ_ADCS = 10
ISR_READ_ADCSNOFIFO = 11
ISR_READ_ADCSFIFO = 12
ISR_READ_ADCSASAP = 15
ISR_WRITE_DACS = 35
ISR_WRITE_DACSNOFIFO = 37
ISR_WRITE_DACSFIFO = 38

 Group short: channel group of ADC channels to read

or DAC channels to be written.

 ChMask unsigned long: bit-mask of ADC channels to
read or DAC channels to be written; LSB
corresponds to channel 0; MSB corresponds to
channel 32; bit value ‘1’ means the
corresponding channel will be read.

AMPDIO DRIVERS

Page 190

N.B. ADC channels will be read cyclically, one
channel each time; DAC channels will be
written a whole frame (all selected channels) at
a time.

Returns short: User Interrupt handle (>= 0). Use this to free the user interrupt with
TCfreeUserInterrupt when finished.

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCUserCBCallback
TCfreeUserInterrupt
TCsetBufferUserInterrupt
TCsetBufferUserInterrupt2
TCsetUserInterruptAIO
TCsetNCBufferUserInterruptAIO
enableInterrupts
disableInterrupts

6.4.14.3 Prepare a Buffered User Interrupt for Miscellaneous I/O — TCsetBufferUserInterrupt2

Used to register a callback function that will be called to process a buffers-worth of data that
has been read from or is to be written to the card over a number of interrupts. This variant is
used to support types of data transfer that do not fit the parameters of
TCsetBufferUserInterrupt or TCsetBufferUserInterruptAIO.

SUPPORTED IN VERSION 4.00 ONWARDS.

If the interrupt source is enabled at the first and second levels, it will be activated. Interrupts
are initially disabled at the first level; use enableInterrupts to enable them. In versions of the
DLL up to version 4.39, all interrupt sources are initially disabled at the second level but are
automatically enabled by this interrupt set-up function. In versions of the DLL from 4.40
onwards, all valid interrupt sources are initially enabled at the second level but are no longer
automatically enabled by this interrupt set-up function. In either case, if interrupt sources have
not been explicitly disabled at the second level, there is no need to explicitly enable them.

i = TCsetBufferUserInterrupt2 (h, pfn, wParam, Chip, SizeReq,
fContin, ISRDATA, Block1, Port1, Block2, Port2)

where h short: board handle as issued by the

registerBoardEx function.

 pfn pointer to function (short, unsigned int,
unsigned long, pointer to unsigned long)
returning void: a pointer to a function
implemented in the user’s code that has the
format of a TCUserCBCallback as defined
below.

 wParam unsigned integer: user-supplied value passed
to the user’s callback function.

 Chip short: determines interrupt source. The
interrupt source number from 0 to 5 multiplied

AMPDIO DRIVERS

Page 191

by 4 (0, 4, 8, 12, 16, 20). For timer/counter
interrupt or first interrupt line on a PPI chip it is
the address offset of the chip. For second
interrupt line on a PPI chip it is the address
offset of the PPI chip plus 4. Corresponds to bit
positions in interrupt enable register if the card
has one, otherwise use the address offset of
the interrupting chip. The following pre-defined
constants may be used:

X1 = 0 PPIXC0 = 0
X2 = 4 PPIXC3 = 4
Y1 = 8 PPIYC0 = 8
Y2 = 12 PPIYC3 = 12
Z1 = 16 PPIZC0 = 16
Z2 = 20 PPIZC3 = 20
PPIX = 0 PPIYC7 = 8
PPIY = 8 EXT0 = 0
PPIZ = 16 ADC0 = 0
 ADC2 = 8
 DAC2 = 8
 DAC4 = 16
 SATRIG = 12

 SizeReq unsigned long: number of data values in each

buffer.

 fContin short: use single buffer if zero, use double
buffering (continuous mode) if non-zero.

 ISRDATA short: type of data transfer to be performed on
interrupt. The following pre-defined constants
may be used:

ISR_WRITE_2DACS = 36

 Block1 unsigned long: usage depends on ISRDATA
value.

For ISR_WRITE_2DACS: the channel group
number of the first DAC to write to.

 Port1 unsigned long: usage depends on ISRDATA
value.

For ISR_WRITE_2DACS: the channel number
(within the group) of the first DAC to write to.

 Block2 unsigned long: usage depends on ISRDATA
value.

For ISR_WRITE_2DACS: the channel group
number of the second DAC to write to.

 Port2 unsigned long: usage depends on ISRDATA
value.

For ISR_WRITE_2DACS: the channel number
(within the group) of the second DAC to write

AMPDIO DRIVERS

Page 192

to.

Returns short: User Interrupt handle (>= 0). Use this to free the user interrupt with
TCfreeUserInterrupt when finished.

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCUserCBCallback
TCfreeUserInterrupt
TCsetBufferUserInterrupt
TCsetBufferUserInterruptAIO
TCsetUserInterrupt2
TCsetNCBufferUserInterrupt2
enableInterrupts
disableInterrupts

6.4.14.4 Buffered User Interrupt Callback — TCUserCBCallback

Function to be implemented in the user’s code. The user will need to pass a pointer to the
function (which has a user-supplied name) to TCsetBufferUserInterrupt,
TCsetBufferUserInterruptAIO or TCsetBufferUserInterrupt2. It must be declared as
‘CALLBACK’. It is called when a buffers-worth of data has been read from the card during
interrupt processing, or another buffers-worth of data is required from the user to be written to
the card during interrupt processing.

SUPPORTED IN VERSION 3.00 ONWARDS.

TCUserCBCallback (h, wParam, BufSize, pBuffer)

where h short: board handle as issued by the

registerBoardEx function.

 wParam unsigned integer: value as supplied by user
to TCsetBufferUserInterrupt function.

 BufSize unsigned long: number of data values which
can be read from the buffer, or which must be
written to the buffer by the user.

 pBuffer pointer to unsigned long: points to start of
buffer.

Returns void.

Prior Calls registerBoardEx
TCsetBufferUserInterrupt
TCsetBufferUserInterruptAIO
TCsetBufferUserInterrupt2
enableInterrupts

See Also

AMPDIO DRIVERS

Page 193

6.4.15 Non-Callback Buffered User Interrupts

6.4.15.1 Prepare a Non-Callback Buffered User Interrupt — TCsetNCBufferUserInterrupt

Called to set up buffered user interrupts without callbacks and without creating any new
threads. Instead of callbacks, data is transferred by the application calling the
TCdriveNCBufferUserInterrupt function. This function may be used by a HP VEE application.

SUPPORTED IN VERSION 4.00 ONWARDS.

N.B. An incompatible version of this function was included in the unreleased Version 3.00.

If the interrupt source is enabled at the first and second levels, it will be activated. Interrupts
are initially disabled at the first level; use enableInterrupts to enable them. In versions of the
DLL up to version 4.39, all interrupt sources are initially disabled at the second level but are
automatically enabled by this interrupt set-up function. In versions of the DLL from 4.40
onwards, all valid interrupt sources are initially enabled at the second level but are no longer
automatically enabled by this interrupt set-up function. In either case, if interrupt sources have
not been explicitly disabled at the second level, there is no need to explicitly enable them.

i = TCsetNCBufferUserInterrupt (h, Chip, SizeReq, fContin, ISRDATA,
Chip1, Chan1, Chip2, Chan2)

where h short: board handle as issued by the

registerBoardEx function.

 Chip short: determines interrupt source. The
interrupt source number from 0 to 5 multiplied
by 4 (0, 4, 8, 12, 16, 20). For timer/counter
interrupt or first interrupt line on a PPI chip it is
the address offset of the chip. For second
interrupt line on a PPI chip it is the address
offset of the PPI chip plus 4. Corresponds to bit
positions in interrupt enable register if the card
has one, otherwise use the address offset of
the interrupting chip. The following pre-defined
constants may be used:

X1 = 0 PPIXC0 = 0
X2 = 4 PPIXC3 = 4
Y1 = 8 PPIYC0 = 8
Y2 = 12 PPIYC3 = 12
Z1 = 16 PPIZC0 = 16
Z2 = 20 PPIZC3 = 20
PPIX = 0 PPIYC7 = 8
PPIY = 8 EXT0 = 0
PPIZ = 16 ADC0 = 0
 ADC2 = 8
 DAC2 = 8
 DAC4 = 16
 SATRIG = 12

 ISRDATA short: type of data transfer to be performed on

interrupt. The following pre-defined constants
may be used:

ISR_NODATA = –1
ISR_READ_16COUNT = 0

AMPDIO DRIVERS

Page 194

ISR_READ_16COUNTSTAT = 16
ISR_READ_32COUNT = 1
ISR_READ_32COUNTSTAT = 17
ISR_READ_PPIABC = 5
ISR_READ_PPIC = 6
ISR_PC27 = 7
ISR_READ_DATA8 = 8
ISR_READ_DATA16 = 9
ISR_READ_2PPIABC = 13
ISR_READ_3PPIABC = 14
ISR_WRITE_DATA8 = 32
ISR_WRITE_DATA16 = 33
ISR_WRITE_PPIABC = 34
ISR_WRITE_16COUNT = 39
ISR_WRITE_32COUNT = 40
ISR_WRITE_2PPIABC = 41
ISR_WRITE_3PPIABC = 42

 SizeReq unsigned long: number of data values in each

buffer.

 fContin short: use single buffer if zero, use double
buffering (continuous mode) if non-zero.

 Chip1 short: address offset of the first timer/counter
or PPI chip to be read or written:

X1 = 0 X2 = 4 PPIX = 0
Y1 = 8 Y2 = 12 PPIY = 8
Z1 = 16 Z2 = 20 PPIZ = 16

 Chan1 short: first timer/counter channel or PPI port to

read or write (0, 1, 2).

 Chip2 short: address offset of the second
timer/counter or PPI chip to be read or written:

X1 = 0 X2 = 4 PPIX = 0
Y1 = 8 Y2 = 12 PPIY = 8
Z1 = 16 Z2 = 20 PPIZ = 16

 Chan2 short: second timer/counter channel or PPI

port to read or write (0, 1, 2)

Returns short: User Interrupt handle (>= 0). Use this to free the user interrupt with
TCfreeUserInterrupt when finished.

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCdriveNCBufferUserInterrupt
TCwaitNCBufferReady
TCwaitMultiNCBufferReady
TCfreeUserInterrupt
TCsetNCBufferUserInterruptAIO
TCsetNCBufferUserInterrupt2

AMPDIO DRIVERS

Page 195

TCsetUserInterrupt
TCsetBufferUserInterrupt
enableInterrupts
disableInterrupts

6.4.15.2 Prepare a Non-Callback Buffered User Interrupt for Analogue I/O —
TCsetNCBufferUserInterruptAIO

Called to set up buffered user interrupts without callbacks and without creating any new
threads. Instead of callbacks, data is transferred by the application calling the
TCdriveNCBufferUserInterrupt function. This function may be used by a HP VEE application.
This variant is used to support reading from or writing to analogue channels.

SUPPORTED IN VERSION 4.00 ONWARDS.

N.B. An incompatible version of this function was included in the unreleased Version 3.00.

If the interrupt source is enabled at the first and second levels, it will be activated. Interrupts
are initially disabled at the first level; use enableInterrupts to enable them. In versions of the
DLL up to version 4.39, all interrupt sources are initially disabled at the second level but are
automatically enabled by this interrupt set-up function. In versions of the DLL from 4.40
onwards, all valid interrupt sources are initially enabled at the second level but are no longer
automatically enabled by this interrupt set-up function. In either case, if interrupt sources have
not been explicitly disabled at the second level, there is no need to explicitly enable them.

i = TCsetNCBufferUserInterruptAIO (h, Chip, SizeReq, fContin,
ISRDATA, Group, ChMask)

where h short: board handle as issued by the

registerBoardEx function.

 Chip short: determines interrupt source. The
interrupt source number from 0 to 5 multiplied
by 4 (0, 4, 8, 12, 16, 20). For timer/counter
interrupt or first interrupt line on a PPI chip it is
the address offset of the chip. For second
interrupt line on a PPI chip it is the address
offset of the PPI chip plus 4. Corresponds to bit
positions in interrupt enable register if the card
has one, otherwise use the address offset of
the interrupting chip. The following pre-defined
constants may be used:

X1 = 0 PPIXC0 = 0
X2 = 4 PPIXC3 = 4
Y1 = 8 PPIYC0 = 8
Y2 = 12 PPIYC3 = 12
Z1 = 16 PPIZC0 = 16
Z2 = 20 PPIZC3 = 20
PPIX = 0 PPIYC7 = 8
PPIY = 8 EXT0 = 0
PPIZ = 16 ADC0 = 0
 ADC2 = 8
 DAC2 = 8
 DAC4 = 16
 SATRIG = 12

 SizeReq unsigned long: number of data values in each

AMPDIO DRIVERS

Page 196

buffer.

 fContin short: use single buffer if zero, use double
buffering (continuous mode) if non-zero.

 ISRDATA short: type of data transfer to be performed on
interrupt. The following pre-defined constants
may be used:

ISR_READ_ADCS = 10
ISR_READ_ADCSNOFIFO = 11
ISR_READ_ADCSFIFO = 12
ISR_READ_ADCSASAP = 15
ISR_WRITE_DACS = 35
ISR_WRITE_DACSNOFIFO = 37
ISR_WRITE_DACSFIFO = 38

 Group short: channel group of ADC channels to read

or DAC channels to be written.

 ChMask unsigned long: bit-mask of ADC channels to
read or DAC channels to be written; LSB
corresponds to channel 0; MSB corresponds to
channel 32; bit value ‘1’ means the
corresponding channel will be read.

N.B. ADC channels will be read cyclically, one
channel each time; DAC channels will be
written a whole frame (all selected channels) at
a time.

Returns short: User Interrupt handle (>= 0). Use this to free the user interrupt with
TCfreeUserInterrupt when finished.

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCdriveNCBufferUserInterrupt
TCwaitNCBufferReady
TCwaitMultiNCBufferReady
TCfreeUserInterrupt
TCsetNCBufferUserInterrupt
TCsetNCBufferUserInterrupt2
TCsetUserInterruptAIO
TCsetBufferUserInterruptAIO
enableInterrupts
disableInterrupts

6.4.15.3 Prepare a Non-Callback Buffered User Interrupt for Miscellaneous I/O —
TCsetNCBufferUserInterrupt2

Called to set up buffered user interrupts without callbacks and without creating any new
threads. Instead of callbacks, data is transferred by the application calling the
TCdriveNCBufferUserInterrupt function. This function may be used by a HP VEE application.
This variant is used to support types of data transfer that do not fit the parameters of

AMPDIO DRIVERS

Page 197

TCsetNCBufferUserInterrupt or TCsetNCBufferUserInterruptAIO.

SUPPORTED IN VERSION 4.00 ONWARDS.

If the interrupt source is enabled at the first and second levels, it will be activated. Interrupts
are initially disabled at the first level; use enableInterrupts to enable them. In versions of the
DLL up to version 4.39, all interrupt sources are initially disabled at the second level but are
automatically enabled by this interrupt set-up function. In versions of the DLL from 4.40
onwards, all valid interrupt sources are initially enabled at the second level but are no longer
automatically enabled by this interrupt set-up function. In either case, if interrupt sources have
not been explicitly disabled at the second level, there is no need to explicitly enable them.

i = TCsetNCBufferUserInterrupt2 (h, Chip, SizeReq, fContin, ISRDATA,
Block1, Port1, Block2, Port2)

where h short: board handle as issued by the

registerBoardEx function.

 Chip short: determines interrupt source. The
interrupt source number from 0 to 5 multiplied
by 4 (0, 4, 8, 12, 16, 20). For timer/counter
interrupt or first interrupt line on a PPI chip it is
the address offset of the chip. For second
interrupt line on a PPI chip it is the address
offset of the PPI chip plus 4. Corresponds to bit
positions in interrupt enable register if the card
has one, otherwise use the address offset of
the interrupting chip. The following pre-defined
constants may be used:

X1 = 0 PPIXC0 = 0
X2 = 4 PPIXC3 = 4
Y1 = 8 PPIYC0 = 8
Y2 = 12 PPIYC3 = 12
Z1 = 16 PPIZC0 = 16
Z2 = 20 PPIZC3 = 20
PPIX = 0 PPIYC7 = 8
PPIY = 8 EXT0 = 0
PPIZ = 16 ADC0 = 0
 ADC2 = 8
 DAC2 = 8
 DAC4 = 16
 SATRIG = 12

 SizeReq unsigned long: number of data values in each

buffer.

 fContin short: use single buffer if zero, use double
buffering (continuous mode) if non-zero.

 ISRDATA short: type of data transfer to be performed on
interrupt. The following pre-defined constants
may be used:

ISR_WRITE_2DACS = 36

 Block1 unsigned long: usage depends on ISRDATA
value.

AMPDIO DRIVERS

Page 198

For ISR_WRITE_2DACS: the channel group
number of the first DAC to write to.

 Port1 unsigned long: usage depends on ISRDATA
value.

For ISR_WRITE_2DACS: the channel number
(within the group) of the first DAC to write to.

 Block2 unsigned long: usage depends on ISRDATA
value.

For ISR_WRITE_2DACS: the channel group
number of the second DAC to write to.

 Port2 unsigned long: usage depends on ISRDATA
value.

For ISR_WRITE_2DACS: the channel number
(within the group) of the second DAC to write
to.

Returns short: User Interrupt handle (>= 0). Use this to free the user interrupt with
TCfreeUserInterrupt when finished.

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx

See Also TCdriveNCBufferUserInterrupt
TCwaitNCBufferReady
TCwaitMultiNCBufferReady
TCfreeUserInterrupt
TCsetNCBufferUserInterrupt
TCsetNCBufferUserInterruptAIO
TCsetUserInterrupt2
TCsetBufferUserInterrupt2
enableInterrupts
disableInterrupts

6.4.15.4 Transfer Data for Non-Callback Buffered User Interrupt — TCdriveNCBufferUserInterrupt

Called to drive data through the interface that has been set up using
TCsetNCBufferUserInterrupt, TCsetNCBufferUserInterruptAIO or
TCsetNCBufferUserInterrupt2. The function will perform a blocking wait, if necessary, until
one of the interrupt data buffers used for data transfer becomes available. The
TCwaitNCBufferReady or TCwaitMultiNCBufferReady functions may be used to detect when
a blocking wait would be performed. This function may be used by a HP VEE application.

SUPPORTED IN VERSION 4.00 ONWARDS.

N.B. An incompatible version of this function was included in the unreleased Version 3.0.

i = TCdriveNCBufferUserInterrupt (h, hUsrInt, pBuffer, pRetLen)

where h short: board handle as issued by the

AMPDIO DRIVERS

Page 199

registerBoardEx function.

 hUsrInt short: user interrupt handle as issued by the
TCsetNCBufferUserInterrupt function.

 pBuffer pointer to unsigned long: pointer to the start
of user’s buffer with which to transfer data to or
from one of the interrupt data buffers. The
amount of data to be transferred is given by
the value of the SizeReq parameter which was
passed to the user interrupt set-up function.

 pRetLen pointer to unsigned long: points to an
unsigned long variable used for returned length
result value. The returned length value is valid
if the function returns OK. The returned length
value is the same as SizeReq parameter which
was passed to the user interrupt set-up
function unless a failure occurred when
reading data from the card, in which case the
returned length value will be 0.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetNCBufferUserInterrupt
TCsetNCBufferUserInterruptAIO
TCsetNCBufferUserInterrupt2
enableInterrupts

See Also TCwaitNCBufferReady
TCwaitMultiNCBufferReady

6.4.15.5 Poll or Wait for Interrupt Data Buffer Ready for Non-Callback Buffered User Interrupt —
TCwaitNCBufferReady

Called to poll non-callback buffered user interrupt to see if an interrupt data buffer is ready for
data transfer using TCdriveNCBufferUserInterrupt. Also used to wait until an interrupt data
buffer is ready with a timeout facility (a poll is implemented as a zero-length timeout). To wait
until more than one non-callback buffered user interrupt has an interrupt data buffer available,
use the TCwaitMultiNCBufferReady function instead. This function may be used by a HP VEE
application.

SUPPORTED IN VERSION 4.02 ONWARDS.

i = TCwaitNCBufferReady (h, hUsrInt, TOutMs)

where h short: board handle as issued by the

registerBoardEx function.

 hUsrInt short: user interrupt handle as issued by the
TCsetNCBufferUserInterrupt function.

 TOutMs unsigned long: maximum amount of time in

AMPDIO DRIVERS

Page 200

milliseconds to wait for an interrupt data buffer
to become available for transfer. Can be set to
0 for a poll or to INFINITE (FFFFFFFF16) to
wait indefinitely.

Returns short: 0 if timed out; 1 if ready for data transfer.

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetNCBufferUserInterrupt
TCsetNCBufferUserInterruptAIO
TCsetNCBufferUserInterrupt2
enableInterrupts

See Also TCdriveNCBufferUserInterrupt
TCwaitMultiNCBufferReady

6.4.15.6 Poll or Wait for Interrupt Data Buffer Ready for Multiple Non-Callback Buffered User Interrupts —
TCwaitMultiNCBufferReady

Called to wait until one of multiple non-callback buffered user interrupts has an interrupt data
buffer that is ready for data transfer using TCdriveNCBufferUserInterrupt, with timeout facility.
May also be used to poll without waiting (a poll is implemented as a zero-length timeout) and
may also be used for a single non-callback buffered user interrupt, but it may be easier to use
the TCwaitNCBufferReady function for those cases. This function may be used by a HP VEE
application.

SUPPORTED IN VERSION 4.20 ONWARDS.

i = TCwaitMultiNCBufferReady (nPairs, phBInArr, phUIInArr, phBout,
phUIOut, TOutMs)

where nPairs unsigned long: number of non-callback

buffered user interrupts being checked.

 phBInArr pointer to short: points to the first of an array
of nPairs board handles as issued by the
registerBoardEx function. Each index
corresponds to one of the nPairs non-callback
buffered user interrupts being checked. The
function does not modify the contents of the
array.

 phUIInArr pointer to short: points to the first of an array
of nPairs user interrupt handles as issued by
the TCsetNCBufferUserInterrupt function. Each
index corresponds to one of the nPairs non-
callback buffered user interrupts being
checked. The function does not modify the
contents of the array.

 phBOut pointer to short: pointer to short integer
variable which will be set to –1 on timeout, or
to the board handle of the first user interrupt
which is ready for data transfer.

AMPDIO DRIVERS

Page 201

 phUIOut pointer to short: pointer to short integer
variable which will be set to –1 on timeout, or
to the user interrupt handle of the first user
interrupt which is ready for data transfer.

 TOutMs unsigned long: maximum amount of time in
milliseconds to wait for an interrupt data buffer
to become available for transfer on any of the
user interrupts being checked. Can be set to 0
for a poll or to INFINITE (FFFFFFFF16) to wait
indefinitely.

Returns short: 0 if timed out; 1 if ready for data transfer (variables pointed to by
phBOut and phUIOut set to board handle and user interrupt
handle, respectively).

or ERRHANDLE
ERRCHAN
ERRDATA
ERRMEMORY

Prior Calls registerBoardEx
TCsetNCBufferUserInterrupt
TCsetNCBufferUserInterruptAIO
TCsetNCBufferUserInterrupt2
enableInterrupts

See Also TCdriveNCBufferUserInterrupt
TCwaitNCBufferReady

6.4.16 Miscellaneous Interrupt Handling Functions

6.4.16.1 Check User Interrupt for Occurrence of Error — TCcheckUserInterruptError

Checks a previously set-up and enabled user interrupt to see if an overflow or under-run has
occurred and clears the condition afterwards.

An overflow condition occurs when a user interrupt is reading data from a port or an ADC
channel and a data sample fetched on a trigger could not be handled due to a FIFO full
condition or lack of room in a user interrupt data buffer.

An under-run condition occurs when a user interrupt is writing data to a port or a DAC channel
and no data is available when a trigger occurs, due to an empty FIFO condition or no data
available in a user interrupt data buffer.

Enabling a user interrupt or checking the overflow or underflow condition with this function
causes any such condition to be cleared (but not before checking the condition).

SUPPORTED IN VERSION 4.23 ONWARDS.

i = TCcheckUserInterruptError (h, hUsrInt)

where h short: board handle as issued by the

registerBoardEx function.

 hUsrInt short: user interrupt handle as issued by user
interrupt set-up function.

AMPDIO DRIVERS

Page 202

Returns short: 0 = overflow or under-run NOT detected; 1 = overflow or under-run

detected and cleared.

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetUserInterrupt
TCsetUserInterruptAIO
TCsetUserInterrupt2
TCsetBufferUserInterrupt
TCsetBufferUserInterruptAIO
TCsetBufferUserInterrupt2
TCsetNCBufferUserInterrupt
TCsetNCBufferUserInterruptAIO
TCsetNCBufferUserInterrupt2
enableInterrupts

See Also

6.4.16.2 Flush (Discard) User Interrupt Data — TCflushUserInterrupt

Flushes (discards) any user interrupt data that is stored in the driver including any data in
FIFOs.

If the interrupt reads data into the user buffer from a device, the driver will reset to the start of
the current buffer and reset the FIFO (if used).

If the interrupt writes data from the user buffer to a device, the driver will discard any
remaining data in all queued buffers and reset the FIFO (if used).

When reading multiple ADC channels or writing multiple DAC channels, the correspondence
between buffer positions and channels will be preserved subject to the following warnings.

WARNING FOR PCI230 AND PCI260: When using the ADC FIFO, it is possible for a sample
to enter the FIFO just after it has been reset by this call. This would cause the
correspondence between buffer positions and channels to be lost (they are shifted by one
position). It is impossible for the driver to detect or prevent this condition. Therefore, if reading
multiple channels from the ADC FIFO, use of this function must be avoided if there is any
possibility that a conversion trigger could occur during the operation.

SUPPORTED IN VERSION 4.35 ONWARDS.

i = TCflushUserInterrupt (h, hUsrInt)

where h short: board handle as issued by the

registerBoardEx function.

 hUsrInt short: user interrupt handle as issued by user
interrupt set-up function.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx

AMPDIO DRIVERS

Page 203

TCsetUserInterrupt
TCsetUserInterruptAIO
TCsetUserInterrupt2
TCsetBufferUserInterrupt
TCsetBufferUserInterruptAIO
TCsetBufferUserInterrupt2
TCsetNCBufferUserInterrupt
TCsetNCBufferUserInterruptAIO
TCsetNCBufferUserInterrupt2
enableInterrupts

See Also

6.4.16.3 Expedite Read User Interrupt — TCexpediteReadUserInterrupt

Cause current or following user interrupt data buffer to complete as soon as possible with as
much data as possible without waiting for the buffer to fill.

SUPPORTED IN VERSION 5.02 ONWARDS.

The amount of data returned in the interrupt data buffer will be between 0 and the length of the
buffer inclusive.

There is no point using this function with non-buffered user interrupts.

The function will fail for user interrupts that write data to the device, or if the driver version is
too old, or if the user interrupt event is not currently enabled.

If the user interrupt reads multiple ADC channels and the buffer length is a multiple of the
number of enabled ADC channels, the amount of data returned in the buffer will also be a
multipls of the number of ADC channels. Any remaining ADC channel data will be saved for
the next buffer in continuous mode, but will be discarded in non-continuous mode, preserving
the channel sequence.

i = TCexpediteReadUserInterrupt (h, hUsrInt)

where h short: board handle as issued by the

registerBoardEx function.

 hUsrInt short: user interrupt handle as issued by user
interrupt set-up function.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetBufferUserInterrupt
TCsetBufferUserInterruptAIO
TCsetBufferUserInterrupt2
TCsetNCBufferUserInterrupt
TCsetNCBufferUserInterruptAIO
TCsetNCBufferUserInterrupt2
enableInterrupts

See Also TCcheckUserInterruptDataAvailable

AMPDIO DRIVERS

Page 204

6.4.16.4 Check User Interrupt Data Available — TCcheckUserInterruptDataAvailable

Check the amount of user interrupt data available to be read.

SUPPORTED IN VERSION 5.02 ONWARDS.

Counts the amount of data in the current user interrupt data buffer and the amount of data int
the driver's small, internal buffer. It also tries to count the amount of data available in hardware
FIFOs.

The check for the amount of ADC data available in the FIFO is not very accurate for the
original PCI230 and PCI260, but is more accurate for the PCI230+ and PCI260+.

The function will fail for user interrupts that write data to the device, or if the driver version is
too old, or if the user interrupt event is not currently enabled.

i = TCcheckUserInterruptDataAvailable (h, hUsrInt, pDataAvail)

where h short: board handle as issued by the

registerBoardEx function.

 hUsrInt short: user interrupt handle as issued by user
interrupt set-up function.

 pDataAvail pointer to unsigned long: pointer to unsigned
long variable which will be set to the amount of
user interrupt data available.

Returns short: OK.

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
TCsetUserInterrupt
TCsetUserInterruptAIO
TCsetUserInterrupt2
TCsetBufferUserInterrupt
TCsetBufferUserInterruptAIO
TCsetBufferUserInterrupt2
TCsetNCBufferUserInterrupt
TCsetNCBufferUserInterruptAIO
TCsetNCBufferUserInterrupt2
enableInterrupts

See Also TCexpediteReadUserInterrupt

6.4.16.5 Enable a User Interrupt — TCenableUserInterrupt

Enables a previously set-up interrupt source at the second level. An interrupt source is active
when it is enabled at the first level (enableInterrupts) and at the second level and has been
set-up.

SUPPORTED IN VERSION 4.40 UPWARDS

In versions of the DLL from version 4.40 onwards, all valid interrupt sources are initially
enabled at the second level, so there is no need to call this function unless the interrupt

AMPDIO DRIVERS

Page 205

source has been explicitly disabled.

i = TCenableUserInterrupt (h, hUsrInt)

where h short: board handle as issued by the

registerBoardEx function.

 hUsrInt short: user interrupt handle as issued by user
interrupt set-up function.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetUserInterrupt
TCsetUserInterruptAIO
TCsetUserInterrupt2
TCsetBufferUserInterrupt
TCsetBufferUserInterruptAIO
TCsetBufferUserInterrupt2
TCsetNCBufferUserInterrupt
TCsetNCBufferUserInterruptAIO
TCsetNCBufferUserInterrupt2

See Also TCdisableUserInterrupt
setIntMask
getIntMask
TCenableInterruptChip

6.4.16.6 Disable a User Interrupt — TCdisableUserInterrupt

Disables a previously set-up interrupt source at the second level. If the interrupt source is
active, it will be deactivated.

SUPPORTED IN VERSION 4.40 UPWARDS

In versions of the DLL from version 4.40 onwards, all valid interrupt sources are initially
enabled at the second level.

i = TCdisableUserInterrupt (h, hUsrInt)

where h short: board handle as issued by the

registerBoardEx function.

 hUsrInt short: user interrupt handle as issued by user
interrupt set-up function.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
TCsetUserInterrupt
TCsetUserInterruptAIO
TCsetUserInterrupt2

AMPDIO DRIVERS

Page 206

TCsetBufferUserInterrupt
TCsetBufferUserInterruptAIO
TCsetBufferUserInterrupt2
TCsetNCBufferUserInterrupt
TCsetNCBufferUserInterruptAIO
TCsetNCBufferUserInterrupt2

See Also TCenableUserInterrupt
setIntMask
getIntMask
TCdisableInterruptChip

6.4.17 Analogue I/O Resource Management

6.4.17.1 Test if ADC Interrupt Source is Free — AIOADCisAvailable

Called to determine whether an ADC chip is available at a particular base address offset for
use as an interrupt source. For some cards, the base address offset is just a placeholder for
the ADC chip.

SUPPORTED IN VERSION 4.00 ONWARDS.

i = AIOADCisAvailable (h, Chip)

where h short: board handle as issued by the

registerBoardEx function.

 Chip short: determines ADC interrupt source. The
interrupt source number from 0 to 5 multiplied
by 4 (0, 4, 8, 12, 16, 20). For some ADC cards
this is an actual base address offset. For
others it depends on the bit position in the
card’s interrupt enable register. The following
pre-defined constants may be used:

ADC0 = 0
ADC2 = 8

For PC26AT, PC27E and PC30AT use ADC0.
For PCI230 and PCI260 use ADC2.

Returns short: 0 = ADC chip interrupt source NOT available, 1 = Available;

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx

See Also AIOcountADCgroups
AIOADCgroupIntChip
AIOcountADCchans

6.4.17.2 Determine Number of ADC Channel Groups — AIOcountADCgroups

Called to determine the number of ADC channel groups supported on a card. Generally, ADC
channels that share the same multiplexer will be in the same channel group. If a card has

AMPDIO DRIVERS

Page 207

ADC channel groups they are numbered from 0 to number of groups–1.

N.B. all currently supported cards have at most one ADC channel group.

SUPPORTED IN VERSION 4.00 ONWARDS.

i = AIOcountADCgroups (h)

where h short: board handle as issued by the

registerBoardEx function.

Returns short: number of ADC channel groups on the card.

Prior Calls registerBoardEx

See Also AIOcountADCchans
AIOADCgroupIntChip
AIOADCgroupHasFIFO

6.4.17.3 Determine Number of ADC Channels in a Group — AIOcountADCchans

Called to determine the number of ADC channels in a particular channel group on a card. If
the specified group exists, channels are numbered from 0 to number of channels–1.

SUPPORTED IN VERSION 4.00 ONWARDS.

i = AIOcountADCchans (h, Group)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: ADC channel group.

Returns short: number of ADC channels in the group; this will be 0 if Group is out
of range for the card.

Prior Calls registerBoardEx
AIOcountADCgroups

See Also

6.4.17.4 Determine ADC Channel Group’s Interrupt Source — AIOADCgroupIntChip

Called to determine the Chip value to use when using an ADC channel group’s ‘conversion
complete’ interrupt as the interrupt source when calling one of the user interrupt set-up
functions. This value may also be used for the AIOADCisAvailable function.

SUPPORTED IN VERSION 4.20 ONWARDS.

i = AIOADCgroupIntChip (h, Group)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: ADC channel group.

Returns short: the Chip value to use for user interrupt set-up (>= 0);

AMPDIO DRIVERS

Page 208

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
AIOcountADCgroups

See Also AIOADCisAvailable

6.4.17.5 Determine whether ADC Channel Group has a FIFO — AIOADCgroupHasFIFO

Called to determine whether an ADC channel group has a FIFO.

SUPPORTED IN VERSION 4.10 ONWARDS.

i = AIOADCgroupHasFIFO (h, Group)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: ADC channel group.

Returns short: 0 = NO FIFO, 1 = has FIFO;

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
AIOcountADCgroups

See Also AIOgetADCgroupFIFOsize

6.4.17.6 Determine whether ADC Channel Group has a FIFO and Get its Size — AIOgetADCgroupFIFOsize

Called to determine whether an ADC channel group has a FIFO and to determine the size of
the FIFO.

SUPPORTED IN VERSION 4.20 ONWARDS.

i = AIOgetADCgroupFIFOsize (h, Group, pSize)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: ADC channel group.

 pSize pointer to unsigned long: pointer to unsigned
long variable which will be set to the size of the
FIFO.

Returns short: 0 = NO FIFO, 1 = has FIFO

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
AIOcountADCgroups

AMPDIO DRIVERS

Page 209

See Also AIOADCgroupHasFIFO

6.4.17.7 Test if DAC Interrupt Source is Free — AIODACisAvailable

Called to determine whether a DAC chip is available at a particular base address offset for
use as an interrupt source. For some cards, the base address offset is just a placeholder for
the DAC chip. Generally, only cards with DAC FIFOs have an interrupt source.

SUPPORTED IN VERSION 4.20 ONWARDS.

i = AIODACisAvailable (h, Chip)

where h short: board handle as issued by the

registerBoardEx function.

 Chip short: determines DAC interrupt source. The
interrupt source number from 0 to 5 multiplied
by 4 (0, 4, 8, 12, 16, 20). It depends on the bit
position in the card’s interrupt enable register.
The following pre-defined constants may be
used:

DAC2 = 8
DAC4 = 16

For PCI224 and PCI234 use DAC2.

For PCI230+ hardware version 2 use DAC4.

Returns short: 0 = DAC chip interrupt source NOT available, 1 = Available;

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx

See Also AIOcountDACgroups
AIODACgroupIntChip
AIOcountDACchans

6.4.17.8 Determine Number of DAC Channel Groups — AIOcountDACgroups

Called to determine the number of DAC channel groups supported on a card. Generally, non-
multiplexed DAC channels will be in the same channel group and DAC channels that share
the same multiplexer will be in the same channel group. If a card has DAC channel groups
they are numbered from 0 to number of groups–1.

N.B. all currently supported cards have at most one DAC channel group.

SUPPORTED IN VERSION 4.00 ONWARDS.

i = AIOcountDACgroups (h)

where h short: board handle as issued by the

registerBoardEx function.

AMPDIO DRIVERS

Page 210

Returns short: number of DAC channel groups on the card.

Prior Calls registerBoardEx

See Also AIOcountDACchans
AIODACgroupIntChip
AIODACgroupHasFIFO

6.4.17.9 Determine Number of DAC Channels in a Group — AIOcountDACchans

Called to determine the number of DAC channels in a particular channel group on a card. If
the specified group exists, channels are numbered from 0 to number of channels–1.

SUPPORTED IN VERSION 4.00 ONWARDS.

i = AIOcountDACchans (h, Group)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: DAC channel group.

Returns short: number of DAC channels in the group; this will be 0 if Group is out
of range for the card.

Prior Calls registerBoardEx
AIOcountDACgroups

See Also

6.4.17.10 Determine DAC Channel Group’s Interrupt Source — AIODACgroupIntChip

Called to determine the Chip value to use when using a DAC channel group’s interrupt as the
interrupt source when calling one of the user interrupt set-up functions. This value may also
be used for the AIODACisAvailable function.

N.B. Only DAC channel groups with a FIFO may be used as an interrupt source. For FIFO-
less DAC channel groups an error (ERRCHAN) is returned.

SUPPORTED IN VERSION 4.20 ONWARDS.

i = AIODACgroupIntChip (h, Group)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: DAC channel group.

Returns short: The Chip value to use for user interrupt set-up (>= 0) if the DAC
channel group can be used as an interrupt source;

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
AIOcountDACgroups

AMPDIO DRIVERS

Page 211

See Also AIODACisAvailable

6.4.17.11 Determine whether DAC Channel Group has a FIFO — AIODACgroupHasFIFO

Called to determine whether a DAC channel group has a FIFO.

SUPPORTED IN VERSION 4.10 ONWARDS.

i = AIODACgroupHasFIFO (h, Group)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: DAC channel group.

Returns short: 0 = NO FIFO, 1 = has FIFO;

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
AIOcountDACgroups

See Also AIOgetDACgroupFIFOsize

6.4.17.12 Determine whether DAC Channel Group has a FIFO and Get its Size — AIOgetDACgroupFIFOsize

Called to determine whether a DAC channel group has a FIFO and to determine the size of
the FIFO.

SUPPORTED IN VERSION 4.20 ONWARDS.

i = AIOgetDACgroupFIFOsize (h, Group, pSize)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: DAC channel group.

 pSize pointer to unsigned long: pointer to unsigned
long variable which will be set to the size of the
FIFO.

Returns short: 0 = NO FIFO, 1 = has FIFO;

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
AIOcountDACgroups

See Also AIODACgroupHasFIFO

AMPDIO DRIVERS

Page 212

6.4.18 Analogue I/O Configuration

6.4.18.1 Query ADC Software Bipolar/Unipolar Settings — AIOgetADCchanMode

Gets the software bipolar/unipolar mode of each ADC channel in a group. This indicates the
way raw data from each ADC channel is cooked, but does not reflect the actual settings in the
hardware.

SUPPORTED IN VERSION 4.00 ONWARDS.

i = AIOgetADCchanMode (h, Group, pModes)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: ADC channel group.

 pModes pointer to unsigned long: pointer to unsigned
long variable which will be set to bit vector
value with 1’s for unipolar channels and 0’s for
bipolar or unsupported channels.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
AIOcountADCgroups

See Also AIOsetADCchanMode
AIOgetHWADCchanMode

6.4.18.2 Query ADC Hardware Bipolar/Unipolar Settings — AIOgetHWADCchanMode

Gets the hardware bipolar/unipolar mode of each ADC channel in a group. This is only
supported on certain cards. It does not indicate the way raw data from each ADC channel is
cooked.

SUPPORTED IN VERSION 4.10 ONWARDS.

i = AIOgetHWADCchanMode (h, Group, pModes)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: ADC channel group.

 pModes pointer to unsigned long: pointer to unsigned
long variable which will be set to bit vector
value with 1’s for unipolar channels and 0’s for
bipolar or unsupported channels.

Returns short: OK

or ERRHANDLE

AMPDIO DRIVERS

Page 213

ERRCHAN
ERRDATA

Prior Calls registerBoardEx
AIOcountADCgroups

See Also AIOgetADCchanMode
AIOsetHWADCchanMode

6.4.18.3 Configure ADC Software Bipolar/Unipolar Settings — AIOsetADCchanMode

Sets the software bipolar/unipolar mode of each ADC channel in a group. This affects the way
raw data from each ADC channel is cooked, but has no effect on the underlying hardware
settings.

SUPPORTED IN VERSION 4.00 ONWARDS.

i = AIOsetADCchanMode (h, Group, ChMask, Modes)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: ADC channel group.

 ChMask unsigned long: bit vector with 1’s for channels
to change and 0’s for channels to leave alone.

 Modes unsigned long: bit vector with 1’s for unipolar
channels and 0’s for bipolar channels.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
AIOcountADCgroups

See Also AIOgetADCchanMode
AIOgetHWADCchanMode
AIOsetHWADCchanMode
AIOsetAllADCchanMode

6.4.18.4 Configure ADC Hardware Bipolar/Unipolar Settings — AIOsetHWADCchanMode

Sets the hardware bipolar/unipolar mode for ADC channels in a group. This is only supported
on certain cards. It has no affect on the way raw data from each ADC channel is cooked.

SUPPORTED IN VERSION 4.10 ONWARDS

i = AIOsetHWADCchanMode (h, Group, ModeVal)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: ADC channel group.

AMPDIO DRIVERS

Page 214

 ModeVal unsigned long: bipolar/unipolar mode value
may depend on card type.

In general: 0 = set all channels to bipolar in
hardware; FFFFFFFF16 = set all channels to
unipolar in hardware.

For PCI230 and PCI260: all non-zero values
set all channels to unipolar in hardware.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
AIOcountADCgroups

See Also AIOsetADCchanMode
AIOgetHWADCchanMode
AIOsetAllADCchanMode

6.4.18.5 Configure ADC All Channels Bipolar or Unipolar — AIOsetAllADCchanMode

Sets the software bipolar/unipolar mode of all ADC channels in a group to all bipolar or all
unipolar. This affects the way raw data from each ADC channel is cooked. Also sets the
hardware bipolar/unipolar mode on cards that support this.

SUPPORTED IN VERSION 4.02 ONWARDS.

i = AIOsetAllADCchanMode (h, Group, Mode)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: ADC channel group.

 Mode short: Zero (0) sets all channels to bipolar;
Non-Zero set all channels to unipolar.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
AIOcountADCgroups

See Also AIOsetADCchanMode
AIOsetHWADCchanMode

6.4.18.6 Query ADC Hardware Single-ended/Differential Settings — AIOgetHWADCchanDiff

Gets the hardware single-ended/differential mode of each ADC channel in a group. This is
only supported on certain cards.

SUPPORTED IN VERSION 4.10 ONWARDS.

AMPDIO DRIVERS

Page 215

i = AIOgetHWADCchanDiff (h, Group, pDiffs)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: ADC channel group.

 pDiffs pointer to unsigned long: pointer to unsigned
long variable which will be set to bit vector
value set with 1’s for differential channels and
0’s for single-ended channels or unsupported
channels.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
AIOcountADCgroups

See Also AIOsetHWADCchanDiff

6.4.18.7 Configure ADC Hardware Single-ended/Differential Settings — AIOsetHWADCchanDiff

Sets the hardware single-ended/differential mode for ADC channels in a group. This is only
supported on certain cards.

SUPPORTED IN VERSION 4.10 ONWARDS.

i = AIOsetHWADCchanDiff (h, Group, DiffVal)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: ADC channel group.

 DiffVal unsigned long: single-ended/differential mode
value may depend on card type.

In general: 0 = set all channels to single-
ended; FFFFFFFF16 = set all channels to
differential.

For PCI230 and PCI260: all non-zero values
set all channels to differential. Single-ended
channels are paired up in differential mode so
only even channels (0, 2, etc.) are valid.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
AIOcountADCgroups

AMPDIO DRIVERS

Page 216

See Also AIOgetHWADCchanDiff

6.4.18.8 Query ADC Hardware Gain Settings — AIOgetHWADCchanGain

Gets the hardware gain settings for a group of ADC channels. This is only supported on
certain cards.

SUPPORTED IN VERSION 4.10 ONWARDS.

i = AIOgetHWADCchanGain (h, Group, pGains)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: ADC channel group.

 pGains pointer to unsigned long: pointer to unsigned
long variable which will be set to channel gains
value which depends on the card type.

For PCI230 and PCI260:

bits 1 – 0: gain for channels 0 and 1
bits 3 – 2: gain for channels 2 and 3
bits 5 – 4: gain for channels 4 and 5
bits 7 – 6: gain for channels 6 and 7
bits 9 – 8: gain for channels 8 and 9
bits 11 –10: gain for channels 10 and 11
bits 13 – 12: gain for channels 12 and 13
bits 15 – 14: gain for channels 15 and 14

Value Unipolar range Bipolar range
 0 0 – 20V* ±10V
 1 0 – 10V ±5V
 2 0 – 5V ±2.5V
 3 0 – 2.5V ±1.25V

E.� . Saturates at about 12V.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
AIOcountADCgroups

See Also AIOsetHWADCchanGain

6.4.18.9 Configure ADC Hardware Gain Settings — AIOsetHWADCchanGain

Sets the hardware gain for ADC channels in a group. This only has an affect on certain cards.

SUPPORTED IN VERSION 4.10 ONWARDS.

i = AIOsetHWADCchanGain (h, Group, ChMask, Gains)

AMPDIO DRIVERS

Page 217

where h short: board handle as issued by the
registerBoardEx function.

 Group short: ADC channel group.

 ChMask unsigned long: bit vector with 1’s for channels
to change and 0’s for channels to leave alone.

 Gains unsigned long: channel gains value which
depends on the card type.

For PCI230 and PCI260:

bits 1 – 0: gain for channels 0 and 1
bits 3 – 2: gain for channels 2 and 3
bits 5 – 4: gain for channels 4 and 5
bits 7 – 6: gain for channels 6 and 7
bits 9 – 8: gain for channels 8 and 9
bits 11 –10: gain for channels 10 and 11
bits 13 – 12: gain for channels 12 and 13
bits 15 – 14: gain for channels 15 and 14

Value Unipolar range Bipolar range
 0 0 – 20V* ±10V
 1 0 – 10V ±5V
 2 0 – 5V ±2.5V
 3 0 – 2.5V ±1.25V

E.� . Saturates at about 12v.

For any bit in ChMask set to ‘1’, both channels
in the pair will be affected by the corresponding
pair of bits in Gains.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
AIOcountADCgroups

See Also AIOgetHWADCchanGain

6.4.18.10 Query DAC Software Bipolar/Unipolar Settings — AIOgetDACchanMode

Gets the software bipolar/unipolar mode of each DAC channel in a group. This indicates the
way cooked data is converted to raw data for each DAC channel, but does not reflect the
actual settings in the hardware.

SUPPORTED IN VERSION 4.00 ONWARDS.

i = AIOgetDACchanMode (h, Group, pModes)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: DAC channel group.

AMPDIO DRIVERS

Page 218

 pModes pointer to unsigned long: pointer to unsigned

long variable which will be set to bit vector
value with 1’s for unipolar channels and 0’s for
bipolar or unsupported channels.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
AIOcountDACgroups

See Also AIOsetDACchanMode
AIOgetHWDACchanMode

6.4.18.11 Query DAC Hardware Bipolar/Unipolar Settings — AIOgetHWDACchanMode

Gets the hardware bipolar/unipolar mode of each DAC channel in a group. This is only
supported on certain cards. It does not indicate the way cooked data is uncooked for each
DAC channel.

SUPPORTED IN VERSION 4.10 ONWARDS.

i = AIOgetHWDACchanMode (h, Group, pModes)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: DAC channel group.

 pModes pointer to unsigned long: pointer to unsigned
long variable which will be set to bit vector
value with 1’s for unipolar channels and 0’s for
bipolar or unsupported channels.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
AIOcountDACgroups

See Also AIOgetDACchanMode
AIOsetHWDACchanMode

6.4.18.12 Configure DAC Software Bipolar/Unipolar Settings — AIOsetDACchanMode

Sets the software bipolar/unipolar mode of each DAC channel in a group. This affects the way
cooked data is converted to raw data for each DAC channel, but has no effect on the
underlying hardware settings.

SUPPORTED IN VERSION 4.00 ONWARDS.

AMPDIO DRIVERS

Page 219

i = AIOsetDACchanMode (h, Group, ChMask, Modes)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: DAC channel group.

 ChMask unsigned long: bit vector with 1’s for channels
to change and 0’s for channels to leave alone.

 Modes unsigned long: bit vector with 1’s for unipolar
channels and 0’s for bipolar channels.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
AIOcountDACgroups

See Also AIOgetDACchanMode
AIOgetHWDACchanMode
AIOsetHWDACchanMode
AIOsetAllDACchanMode

6.4.18.13 Configure DAC Hardware Bipolar/Unipolar Settings — AIOsetHWDACchanMode

Sets the hardware bipolar/unipolar mode for DAC channels in a group. This only has an affect
on certain cards. It has no affect on the way cooked data is uncooked for each DAC channel.

SUPPORTED IN VERSION 4.10 ONWARDS.

i = AIOsetHWDACchanMode (h, Group, ModeVal)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: DAC channel group.

 ModeVal unsigned long: bipolar/unipolar mode value
may depend on card type.

In general: 0 = set all channels to bipolar in
hardware; FFFFFFFF16 = set all channels to
unipolar in hardware.

For PCI230: all non-zero values set all
channels to unipolar in hardware.

For PCI224: all non-zero values set all
channels to unipolar in hardware.

For PCI234: only value 0 is allowed, as there is
no hardware unipolar mode.

Returns short: OK

AMPDIO DRIVERS

Page 220

or ERRHANDLE

ERRCHAN

Prior Calls registerBoardEx
AIOcountDACgroups

See Also AIOsetDACchanMode
AIOgetHWDACchanMode
AIOsetAllDACchanMode

6.4.18.14 Configure DAC All Channels Bipolar or Unipolar — AIOsetAllDACchanMode

Sets the software bipolar/unipolar mode of all DAC channels in a group to all bipolar or all
unipolar. This affects the way cooked data is converted to raw data for each DAC channel.
Also sets the hardware bipolar/unipolar mode on cards that support this.

SUPPORTED IN VERSION 4.02 ONWARDS.

i = AIOsetAllDACchanMode (h, Group, Mode)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: DAC channel group.

 Mode short: Zero (0) sets all channels to bipolar;
Non-Zero set all channels to unipolar.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
AIOcountDACgroups

See Also AIOsetDACchanMode
AIOsetHWDACchanMode

6.4.18.15 Query DAC Hardware Output Range Settings — AIOgetHWDACchanRange

Gets the hardware output range settings for a group of DAC channels. This is only supported
on certain cards.

SUPPORTED IN VERSION 4.20 ONWARDS.

i = AIOgetHWDACchanRange (h, Group, pRanges)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: DAC channel group.

 pRanges pointer to unsigned long: pointer to unsigned
long variable which will be set to channel
output ranges value which depends on the

AMPDIO DRIVERS

Page 221

card type.

For PCI224: Value applies to all channels.

Value Unipolar range Bipolar range
 0 0 – 1.25V ±1.25V
 1 0 – 2.5V ±2.5V
 2 0 – 5V ±5V
 3 0 – 10V ±10V

For PCI234: Value applies to all channels. 0 =
use range selected by jumpers.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
AIOcountDACgroups

See Also AIOsetHWDACchanRange

6.4.18.16 Configure DAC Hardware Output Range Settings — AIOsetHWDACchanRange

Sets the hardware output ranges for DAC channels in a group. This only has an affect on
certain cards.

SUPPORTED IN VERSION 4.20 ONWARDS.

i = AIOsetHWDACchanRange (h, Group, ChMask, Ranges)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: ADC channel group.

 ChMask unsigned long: bit vector with 1’s for channels
to change and 0’s for channels to leave alone.

 Ranges unsigned long: channel output ranges value
which depends on the card type.

For PCI224: Value applies to all channels.
ChMask is ignored.

Value Unipolar range Bipolar range
 0 0 – 1.25V ±1.25V
 1 0 – 2.5V ±2.5V
 2 0 – 5V ±5V
 3 0 – 10V ±10V

For PCI234: Value applies to all channels.
ChMask is ignored. 0 = use range selected by
jumpers.

Returns short: OK

AMPDIO DRIVERS

Page 222

or ERRHANDLE

ERRCHAN

Prior Calls registerBoardEx
AIOcountDACgroups

See Also AIOgetHWDACchanRange

6.4.19 Analogue Input

6.4.19.1 Set ADC Conversion Trigger Source — AIOsetADCconvSource

Sets the ADC conversion trigger source for an ADC channel group. Depending on the card,
certain settings may require jumpers to be set, be unsupported or ignored.

SUPPORTED IN VERSION 4.00 ONWARDS.

i = AIOsetADCconvSource (h, Group, Cnv)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: ADC channel group.

 Cnv short: conversion trigger source:

CNV_NONE = 0 No trigger
CNV_SW = 1 Software triggered
CNV_EXT_P = 2 External +ve edge
CNV_EXT_N = 3 External –ve edge
CNV_CT0 = 4 Timer channel 0 OUT
CNV_CT1 = 5 Timer channel 1 OUT
CNV_CT2 = 6 Timer channel 2 OUT

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
AIOcountADCgroups

See Also AIOsetADCmultiplexer
AIOstartADCconversion
AIOgetADCdata

6.4.19.2 Set ADC Current Channel in Multiplexer — AIOsetADCmultiplexer

Sets the ADC multiplexer of a specified channel group to select a specified channel.

SUPPORTED IN VERSION 4.00 ONWARDS.

i = AIOsetADCmultiplexer (h, Group, Chan)

where h short: board handle as issued by the

AMPDIO DRIVERS

Page 223

registerBoardEx function.

 Group short: ADC channel group.

 Chan short: selected channel.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
AIOcountADCgroups
AIOcountADCchans

See Also AIOsetADCconvSource
AIOstartADCconversion
AIOgetADCdata

6.4.19.3 Software-trigger ADC Conversion — AIOstartADCconversion

Starts software-triggered A-to-D conversion for the currently multiplexed channel on a
specified channel group.

SUPPORTED IN VERSION 4.00 ONWARDS.

i = AIOstartADCconversion (h, Group)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: ADC channel group.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
AIOcountADCgroups
AIOsetADCconvSource
AIOsetADCmultiplexer

See Also AIOgetADCdata

6.4.19.4 Read ADC Data — AIOgetADCdata

Reads data from an ADC channel group’s ADC port and cooks it. The data read is assumed
to be from the channel currently multiplexed at the time of the previous software-triggered
conversion or assumed time of the previous external-triggered or timer-triggered conversion.
(This will be inaccurate if no conversion has been triggered since the last time the multiplexer
was changed.) The user can alter the multiplexer in the period between starting a software-
triggered interrupt and reading the value back, if desired.

SUPPORTED IN VERSION 4.00 ONWARDS.

i = AIOgetADCdata (h, Group, pData)

AMPDIO DRIVERS

Page 224

where h short: board handle as issued by the

registerBoardEx function.

 Group short: ADC channel group.

 pData pointer to long: pointer to long integer
variable which will be set to the cooked ADC
data value.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
AIOcountADCgroups
AIOsetADCconvSource
AIOsetADCmultiplexer
AIOstartADCconversion

See Also

6.4.19.5 Set ADC Start Acquisition Trigger — AIOsetADCstartAcquisitionTrigger

Sets ADC start acquisition trigger if supported by the driver and the hardware.

A continuous acquisition starts when the start acquisition trigger occurs after the driver is
given the first buffer to be filled in by DIO_TC.DLL. Subsequent buffers are filled as normal.

For a non-continuous acquisition, the driver applies the start acquisition trigger to every buffer
given to it by DIO_TC.DLL.

If the start acquisition type is START_TRIG, the specified hold-off count must be zero and
data acquired before the trigger occurs is discarded.

If the start acquisition type is START_NOW, a non-zero hold-off count may be specified to
delay setting the trigger until the number of samples specified by the hold-off count have been
acquired. Data acquired before the trigger occurs is not discarded. The function
AIOgetADCpretriggerCount may be called to check whether the trigger has occurred and the
position of the sample where the trigger occurred.

Start acquisition types other than START_NOW and start acquisition trigger sources other
than TRIG_NOW are only supported by the new PCI230+ and PCI260+ cards.

If the start acquisition trigger uses an analogue channel, this should be one of the channels
being acquired.

For the PCI230+ and PCI260+ cards, start acquisition types other than START_NOW and
start acquisition trigger sources other than TRIG_NOW are only used when the ADC FIFO is
enabled.

SUPPORTED IN VERSION 4.42 ONWARDS.

i = AIOsetADCstartAcquisitionTrigger (h, Group, Trig, Start, Chan,
Threshold, Hysteresis, HoldOff)

where h short: board handle as issued by the

AMPDIO DRIVERS

Page 225

registerBoardEx function.

 Group short: ADC channel group.

 Trig short: start acquisition trigger source:

TRIG_NOW = 0

Trigger immediately
TRIG_NEVER = 1
Never trigger
TRIG_EXT_LTOH = 2

Trigger on external digital low-high
transition

TRIG_EXT_HTOL = 3
Trigger on external digital high-low
transition

TRIG_EXT_LOW = 4
Trigger when external digital signal is
low

TRIG_EXT_HIGH = 5
Trigger when external digital signal is
high

TRIG_ANA_LTOH = 6
Trigger on analogue low-high transition

TRIG_ANA_HTOL = 7
Trigger on analogue high-low transition

TRIG_ANA_LOW = 8
Trigger when analogue value is low

TRIG_ANA_HIGH = 9
Trigger when analogue value is high

 Start short: start acquisition start type:

START_NOW = 0
Start as soon as possible (pre-trigger mode)
START_TRIG = 1
Start when trigger occurs (no pre-trigger)

 Chan short: analogue channel for start acquisition
trigger.

 Threshold long: analogue threshold for start acquisition
trigger.

 Hysteresis long: analogue hysteresis for low-high and
high-low transitions.

 HoldOff unsigned long: number of samples to acquire
before applying the trigger when Start is
START_NOW.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRRANGE
ERRSUPPORT

Prior Calls registerBoardEx

AMPDIO DRIVERS

Page 226

AIOcountADCgroups

See Also AIOgetADCpretriggerCount
AIOsetADCconvSource

6.4.19.6 Get ADC Pre-trigger Count — AIOgetADCpretriggerCount

Gets the pre-trigger count for the ADC start acquisition trigger when the start type has been
set to START_NOW. This gives the number of samples that were acquired before the trigger
occurred, or the number of samples that have been acquired so far if the trigger has not
occurred yet. The function return value indicates whether the trigger has occurred.

If the acquisition trigger start type was set to START_TRIG, the pre-trigger count will be 0
(except in non-continuous mode when the buffer length is not an integer multiple of the
number of enabled channels). The function return value still indicates whether the trigger has
occurred.

Note that in non-continuous mode, the start acquisition trigger is applied at the start of each
buffer, so the return value is only valid at certain points in time. In non-continuous mode it is
best to call this function from the callback function (if using callbacks) or following a call to the
TCdriveNCBufferUserInterrupt function (if not using callbacks).

SUPPORTED IN VERSION 4.42 ONWARDS.

i = AIOgetADCpretriggerCount (h, Group, pCount)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: ADC channel group.

 pCount pointer to unsigned long: pointer to a
variable to be set to the pre-trigger count
value.

Returns short: FALSE (= 0) if the start acquisition trigger has not occurred yet.
TRUE (= 1) if the start acquisition trigger has occurred.

or ERRHANDLE
ERRCHAN
ERRDATA
ERRSUPPORT

Prior Calls registerBoardEx
AIOcountADCgroups
AIOsetADCstartAcquisitionTrigger
TCsetBufferUserInterruptAIO
TCsetNCBufferUserInterruptAIO
enableInterrupts

See Also

AMPDIO DRIVERS

Page 227

6.4.20 Analogue Output

6.4.20.1 Write DAC Data — AIOsetDACchanData

Writes a set of data to a corresponding to a set of DAC channels, all belonging to a specified
channel group.

SUPPORTED IN VERSION 4.00 ONWARDS.

i = AIOsetDACchanData (h, Group, ChMask, pData)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: DAC channel group.

 ChMask unsigned long: bit vector with 1’s for channels
to write and 0’s for channels to leave alone.

 pData pointer to unsigned long: pointer to first
element of array of data to be written to the
corresponding DAC channels. Successive
elements of the array correspond to
successive ‘1’ bits in ChMask, from the least
significant ‘1’ bit to the most significant ‘1’ bit.
Only the least significant 16 bits of each array
element are used; this 16-bit value is treated
as an unsigned integer for unipolar channels or
as a 2’s complement signed integer for bipolar
channels.

E.g. if ChMask is set to 10 (11002), the first
element of the array contains data for DAC
channel 2 and the second element of the array
contains data for DAC channel 3.

The contents of the array are not modified by
the function.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
AIOcountDACgroups
AIOcountDACchans

See Also

6.4.20.2 Set DAC Conversion Trigger Source — AIOsetDACconvSource

Sets the DAC conversion trigger source for a DAC channel group. This only applies while the
DAC is being operated in certain ways. It applies when an interrupt has been set up to drive
the DAC in FIFO mode. It also applies when a waveform has been loaded into the DAC
hardware’s waveform playback buffer. In both cases, it specifies the clock source for

AMPDIO DRIVERS

Page 228

triggering the DAC with the next data, and only applies to card types that have specific
support for these operations. Depending on the card, certain settings may be unsupported or
ignored.

For PCI224 and PCI234 and PCi230+ hardware version 2, CNV_NONE selects no trigger,
CNV_SW selects the software trigger, CNV_EXT_P selects the external positive-going edge
trigger, CNV_EXT_N selects the external negative-going edge trigger, CNV_CT0 through
CNV_CT2 respectively select Z2 timer channel 0, 1 or 2 trigger.

SUPPORTED IN VERSION 4.20 ONWARDS.

i = AIOsetDACconvSource (h, Group, Cnv)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: DAC channel group.

 Cnv short: conversion trigger source:

CNV_NONE = 0 No trigger
CNV_SW = 1 Software triggered
CNV_EXT_P = 2 External +ve edge
CNV_EXT_N = 3 External –ve edge
CNV_CT0 = 4 Timer channel 0 OUT
CNV_CT1 = 5 Timer channel 1 OUT
CNV_CT2 = 6 Timer channel 2 OUT

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
AIOcountDACgroups

See Also AIOstartDACconversion
AIOsetDACchanWaveform

6.4.20.3 Set DAC Waveform Data — AIOsetDACchanWaveform

Sets up a multi-channel waveform in a DAC channel group’s hardware playback buffer. This is
only supported on certain cards.

The DAC group’s conversion trigger source, that is set using AIOsetDACconvSource, is used
to clock data for conversion on each tick. On each tick, the next frame of data (one datum for
each enabled channel) is converted by the DACs. After the last frame of data, it wraps around
to the first frame on the next tick.

The waveform can be cancelled by setting a zero-length waveform, replacing with another
waveform, or writing data to the DAC channel group using AIOsetDACchanData.

It is supported on PCI224 and PCI234 and PCI230+ hardware version 2. On supported cards,
the hardware playback buffer is the FIFO and its size can be determined by calling
AIOgetDACgroupFIFOsize. For PCI224 and PCI234 the maximum supported length is 4096.
For PCI230+ hardware version 2 the maximum supported length is 1024.

SUPPORTED IN VERSION 4.20 ONWARDS.

AMPDIO DRIVERS

Page 229

i = AIOsetDACchanWaveform (h, Group, ChMask, pData, DLen)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: DAC channel group.

 ChMask unsigned long: bit vector with 1’s for channels
to write and 0’s for channels to leave alone.

 pData pointer to unsigned long: pointer to first
element of array of data to be written to the
DAC channels enabled by setting bits to ‘1’ in
ChMask. This may be a two-dimensional array
or a suitably formatted one dimensional array.
This consists of m frames of n data values,
where m is a whole number greater than or
equal to 0, and n is the number of enabled
channels. The m frames are indexed by the
outer dimension and the n data values within
each frame are indexed by the inner
dimension.

Successive elements of the array within each
frame correspond to successive ‘1’ bits in
ChMask, from the least significant ‘1’ bit to the
most significant ‘1’ bit (exactly n bits are set to
‘1’). Only the least significant 16 bits of each
array element are used; this 16-bit value is
treated as an unsigned integer for unipolar
channels or as a 2’s complement signed
integer for bipolar channels.

E.g. if ChMask is set to 10 (11002), n is 2; the
first element of each frame contains data for
DAC channel 2 and the second element of
each frame contains data for DAC channel 3.

The product m x n must not be larger than the
hardware playback buffer.

The contents of the array are not modified by
the function.

 DLen unsigned long: Total length of data, i.e. m x n,
the product of the number of frames multiplied
by the number of enabled channels. This may
be zero.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
AIOcountDACgroups
AIOcountDACchans

AMPDIO DRIVERS

Page 230

See Also AIOsetDACconvSource

AIOstartDACconversion

6.4.20.4 Software-trigger DAC Conversion — AIOstartDACconversion

Provides a tick of the software clock for a DAC channel group. This is only effective when the
DAC group’s conversion trigger source has been set to CNV_SW and the DAC is being
operated in certain modes. It applies when an interrupt has been set up to drive the DAC in
FIFO mode. It also applies when a waveform has been loaded into the DAC hardware’s
waveform playback buffer. This only applies to card types that have specific support for these
operations.

SUPPORTED IN VERSION 4.20 ONWARDS.

i = AIOstartDACconversion (h, Group)

where h short: board handle as issued by the

registerBoardEx function.

 Group short: DAC channel group.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
AIOcountDACgroups
AIOsetDACconvSource

See Also AIOsetDACchanWaveform

6.4.21 Support for HP VEE

6.4.21.1 Timer Counter Functions In HP VEE.

As HP Vee does not support passing of float types, there are versions of some of the TC functions
that use parameters of type double instead of float. These just call the normal float versions
internally. These functions are:

 TCVgetRatio (calls TCgetRatio)
 TCVsetMonoShot (calls TCsetMonoShot)
 TCVsetAstable (calls TCsetAstable)
 TCVgetExtPeriod (calls TCgetExtPeriod)
 TCVgetExtFreq (calls TCgetExtFreq)
 TCVgenerateFreq (calls TCgenerateFreq)
 TCVgeneratePulse (calls TCgeneratePulse)
 TCVgenerateAccFreq (calls TCgenerateAccFreq)
 TCVmultiplyFreq (calls TCmultiplyFreq)
 TCVdivideFreq (calls TCdivideFreq)
 TCVsetDCO (calls TCsetDCO)

AMPDIO DRIVERS

Page 231

6.4.22 Legacy Analogue I/O Functions

6.4.22.1 Set PC27 Multiplexer Register — PC27SetMultiplexer

Outputs a byte to the PC27 multiplexer register.

SUPPORTED IN VERSION 2.01 ONWARDS. RETAINED FOR BACKWARD
COMPATIBILITY.

i = PC27SetMultiplexer (h, Data)

where h short: board handle as issued by the

registerBoardEx function.

 Data short: data to write.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx

See Also PC27StartConversion
PC27getData

6.4.22.2 Start PC27 ADC Conversion — PC27StartConversion

Writes to the PC27 start conversion register.

SUPPORTED IN VERSION 2.01 ONWARDS. RETAINED FOR BACKWARD
COMPATIBILITY.

i = PC27StartConversion (h)

where h short: board handle as issued by the

registerBoardEx function.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx
PC27SetMultiplexer

See Also PC27getData

6.4.22.3 Read PC27 ADC Data — PC27getData

Reads a sample from the PC27 ADC port.

SUPPORTED IN VERSION 2.0 ONWARDS. RETAINED FOR BACKWARD COMPATIBILITY.

i = PC27getData (h, pData)

where h short: board handle as issued by the

AMPDIO DRIVERS

Page 232

registerBoardEx function.

 pData pointer to short: pointer to short integer
variable which will be set to the raw data value
from the PC27 ADC port.

Returns short: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoardEx
PC27SetMultiplexer
PC27StartConversion

See Also

6.4.22.4 Write PC27 DAC Data — PC24setData

Outputs a sample to a PC24 DAC channel.

SUPPORTED IN VERSION 2.0 ONWARDS. RETAINED FOR BACKWARD COMPATIBILITY.

i = PC24setData (h, Chan, Data)

where h short: board handle as issued by the

registerBoardEx function.

 Chan short: DAC channel number (0, 1, 2, 3).

 Data short: raw data value to write to DAC channel.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx

See Also

6.4.23 Driver Interface Functions

6.4.23.1 Send IOCTL Instruction — DIO_TC_IOCTL

Pass an IOCTL instruction directly to the driver. These are documented in ADIOCTL.RTF.
Examples of use are the DIO_TC.DLL source code itself.

i = DIO_TC_IOCTL (h, Code, pIOBuffer, SizeOfBuffer)

where h short: board handle as issued by the

registerBoardEx function.

 Code int: IOCTL code. See ADIOCTL.H and
ADIOCTL.RTF

AMPDIO DRIVERS

Page 233

 pIOBuffer pointer to unsigned long: pointer to IOCTL

data packet cast as pointer to unsigned long.
Content depends on IOCTL code used. (See
ADIOCTL.RTF for more information.) It may be
one of the following types:

ULONG
TDIO_PORTIO
TDIO_2PORTIO
TDIO_BLKPORTIO
TDIO_IRQSETUP
Array of ULONG

 SizeOfBuffer unsigned long: size of IOCTL buffer pointed

to by pIOBuffer in bytes.

Returns short: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoardEx

See Also

6.5 Library Error Codes

Mnemonic Returned
Value

Meaning

OK 0 Operation successful.
ERRSUPPORT –1 Operation not supported by board, or the maximum

boards/buffers are already registered.
ERRBASE –2 Base address is invalid or in use.
ERRIRQ –3 Interrupt level is invalid or in use.
ERRHANDLE –4 Invalid board handle, or board not registered.
ERRCHAN –5 Invalid channel number
ERRDATA –6 Invalid data
ERRRANGE –7 Out of range
ERRMEMORY –8 Insufficient Memory
ERRBUFFER –9 Invalid buffer handle – not allocated
ERRPC226 –10 PC226 board not found (for VCO function)

AMPDIO DRIVERS

Page 234

7 IOCTL INTERFACE

7.1 About this Chapter

This chapter gives a brief outline of the low-level interface to the Amplicon DIO driver. See the
AMPIOCTL.RTF file (installed in the DIO_CODE subdirectory) for a full description. See the C
source code for DIO_TC.DLL for examples of usage.

7.2 About the Driver

The Amplicon Windows DIO Driver is a kernel mode driver providing and IO control (IOCTL)
interface to the hardware. Different drivers are provided for different versions of Windows. A VxD is
provided for Windows 95, Windows 98 and Windows ME. A legacy kernel mode driver is provided
for Windows NT 4.0. A plug-and-play kernel mode driver is provided for Windows 2000 upwards.
All the drivers provide more or less the same ioctl interface, but there are minor differences
between the VxD and the drivers for NT-based operating systems.

7.2.1 Driver Architecture

Both the Windows 95 and NT device drivers support an IOCTL interface allowing a wrapper DLL or
a user application to communicate directly to the hardware. An example wrapper DLL,
DIO_TC.DLL has been provided.

Architecture

7.3 The IOCTL Commands Supported

The IOCTL interface is defined in the C header file AMPIOCTL.H. These IOCTL commands can be
used in conjunction with the DIO_IOCTL call function to directly interface to the driver.

IOCTL_QUERY_VERSION

Determine driver version. (Version 4.02
onwards.)

IOCTL_QUERY_RESOURCE

Determine card type, IRQ and I/O base address.

IOCTL_QUERY_PCIPOS

Determine card position on PCI bus. (Version
4.20 onwards.)

IOCTL_QUERY_HWVERSION Determine card’s hardware version. (Version

IOCTL Amplicon API

SPI

System API

User
Application

Wrapper DLL Driver Hardware

Operating
System

AMPDIO DRIVERS

Page 235

 4.42 onwards.)

IOCTL_QUERY_REALHWVERSION

Determine card’s real hardware version.
(Version 5.02 onwards.)

IOCTL_GET_DEVICE

Windows 95 only — allow support for more than
one card.

IOCTL_GET_NEXT_DEVICE

Windows 95 only — allow support for more than
one card.

IOCTL_GET_NTH_DEVICE

Windows 95 only — allow support for more than
one card. (Version 4.20 onwards.)

IOCTL_SET_CTDATA

Write byte data to counter timer data port.

IOCTL_GET_CTDATA

Read byte data from counter timer data port.

IOCTL_SET_CTCONTROL

Write byte data to counter timer control port.

IOCTL_SET_CTCLK

Set counter timer clock source.

IOCTL_SET_CTGATE

Set counter timer gate source.

IOCTL_SET_CTDATA16

Write 16-bit data to counter timer data port.
(Version 4.02 onwards.)

IOCTL_GET_CTDATA16

Read 16-bit data from counter timer data port.
(Version 4.02 onwards.)

IOCTL_SET_CTDATA32

Write two 16-bit values to two counter timer data
ports. (Version 4.02 onwards.)

IOCTL_GET_CTDATA32

Read two 16-bit values from two counter timer
data ports. (Version 4.02 onwards)

IOCTL_SET_PPIDATA

Write byte data to PPI digital I/O data port.

IOCTL_GET_PPIDATA

Read byte data from PPI digital I/O data port.

IOCTL_SET_PPICONTROL

Write byte data to PPI digital I/O control port.

IOCTL_GET_PPISTATUS

Read data last written to PPI digital I/O control
port.

IOCTL_SET_PPIABC

Write byte data to PPI ports A, B and C. (Version
4.02 onwards.)

IOCTL_SET_PPIXBC

Write byte data to PPI ports B and C. (Version
4.02 onwards.)

IOCTL_SET_PPIAXC

Write byte data to PPI ports A and C. (Version
4.02 onwards.)

IOCTL_SET_PPIABX

Write byte data to PPI ports A and B. (Version
4.02 onwards.)

IOCTL_GET_PPIABC

Read byte data from PPI ports A, B and C.
(Version 4.02 onwards.)

AMPDIO DRIVERS

Page 236

IOCTL_GET_IODATA

Read a block of data from any I/O address within
card I/O space. (Version 2.00 onwards.)

IOCTL_SET_IODATA

Write a block of data to any I/O address within
card I/O space. (Version 2.00 onwards.)

IOCTL_QUERY_ADCNUMGROUPS

Determine number of ADC channel groups on a
card. (Version 4.02 onwards.)

IOCTL_QUERY_DACNUMGROUPS

Determine number of DAC channel groups on a
card. (Version 4.02 onwards.)

IOCTL_QUERY_ADCNUMCHANS

Determine number of channels within an ADC
channel group. (Version 4.02 onwards.)

IOCTL_QUERY_DACNUMCHANS

Determine number of channels within a DAC
channel group. (Version 4.02 onwards.)

IOCTL_QUERY_ADCCHANMODE

Get current software unipolar/bipolar settings for
channels within an ADC channel group. (Version
4.02 onwards.)

IOCTL_QUERY_DACCHANMODE

Get current software unipolar/bipolar settings for
channels within a DAC channel group. (Version
4.02 onwards.)

IOCTL_QUERY_HWADCCHANMODE

Get current hardware unipolar/bipolar settings
for channels within an ADC channel group.
(Version 4.10 onwards.)

IOCTL_QUERY_HWDACCHANMODE

Get current hardware unipolar/bipolar settings
for channels within a DAC channel group.
(Version 4.10 onwards.)

IOCTL_QUERY_HWADCDIFFMODE

Get current hardware single-ended/ differential
settings for channels within an ADC channel
group. (Version 4.10 onwards.)

IOCTL_QUERY_HWADCCHANGAIN

Get current hardware gain settings for channels
within an ADC channel group. (Version 4.10
onwards.)

IOCTL_QUERY_HWDACCHANRANGE

Get current hardware output range settings for
channels within a DAC channel group. (Version
4.20 onwards.)

IOCTL_SET_ADCCHANMODE

Mark channels within an ADC channel group as
unipolar or bipolar. (Version 4.02 onwards.)

IOCTL_SET_DACCHANMODE

Mark channels within a DAC channel group as
unipolar or bipolar. (Version 4.02 onwards.)

IOCTL_SET_HWADCCHANMODE

Set hardware ADC unipolar/bipolar settings for
channels within an ADC channel group. (Version
4.10 onwards.)

IOCTL_SET_HWDACCHANMODE

Set hardware DAC unipolar/bipolar settings for
channels within a DAC channel group. (Version
4.10 onwards.)

AMPDIO DRIVERS

Page 237

IOCTL_SET_HWADCDIFFMODE

Set hardware ADC single-ended/ differential
settings for channels within an ADC channel
group. (Version 4.10 onwards.)

IOCTL_SET_HWADCCHANGAIN

Set hardware gain settings for channels within
an ADC channel group. (Version 4.10 onwards.)

IOCTL_SET_HWDACCHANRANGE

Set hardware output range settings for channels
within a DAC channel group. (Version 4.20
onwards.)

IOCTL_SET_ADCCONVSRCE

Set conversion trigger source for an ADC
channel group. (Version 4.02 onwards.)

IOCTL_SET_ADCMUX

Select multiplexed channel for an ADC channel
group. (Version 4.02 onwards.)

IOCTL_START_ADCCONV

Provides a software trigger for an A-to-D
conversion for an ADC channel group. (Version
4.02 onwards.)

IOCTL_GET_ADC

Reads and cooks data from the data port of an
ADC channel group. (Version 4.02 onwards.)

IOCTL_SET_ADCSTARTACQTRIG

Sets ADC start acquisition trigger for an ADC
channel group. (Version 4.42 onwards.)

IOCTL_GET_ADCSTARTACQ-
TRIGGERED

Determines whether start acquisition trigger has
occurred for an ADC channel group, and the
count of samples stored before the trigger
occurred. (Version 4.42 onwards.)

IOCTL_SET_DACCHANS

Writes a set of cooked data values to a
corresponding set of channels within a DAC
channel group. (Version 4.02 onwards.)

IOCTL_SET_DACCONVSRCE

Set conversion trigger source for a DAC channel
group in FIFO mode. (Version 4.20 onwards.)

IOCTL_SET_DACFIFOWAVE

Set DAC FIFO wrap-around mode waveform.
(Version 4.20 onwards.)

IOCTL_START_DACCONV

Trigger a DAC conversion in FIFO mode.

IOCTL_ENABLE_IRQEVENT

Enable an interrupt source and configure which
data to fetch or write during the interrupt service.

IOCTL_DISABLE_IRQEVENT

Disable an interrupt source.

IOCTL_GET_INTSTATUS

Read interrupt status port.

IOCTL_WAIT_INTEVENT

Wait for an interrupt event to occur.

IOCTL_WAIT_INTEVENT_0

Waits for interrupt event 0 to occur. (Version
4.02 onwards.)

IOCTL_WAIT_INTEVENT_1

Waits for interrupt event 1 to occur. (Version
4.02 onwards.)

AMPDIO DRIVERS

Page 238

IOCTL_WAIT_INTEVENT_2

Waits for interrupt event 2 to occur. (Version
4.02 onwards.)

IOCTL_WAIT_INTEVENT_3

Waits for interrupt event 3 to occur. (Version
4.02 onwards.)

IOCTL_WAIT_INTEVENT_4

Waits for interrupt event 4 to occur. (Version
4.02 onwards.)

IOCTL_WAIT_INTEVENT_5

Waits for interrupt event 5 to occur. (Version
4.02 onwards.)

IOCTL_WAIT_INTEVENT_READ_DIRECT

Wait for an interrupt event to occur using “direct
I/O” method for buffer transfer. (Version 4.43
onwards.)

IOCTL_WAIT_INTEVENT_WRITE_DIRECT

Wait for a “write” interrupt event to occur using
“direct I/O” method for buffer transfer. (Version
4.43 onwards.)

IOCTL_GET_IRQEVENT_ERROR

Determine if overflow or under-run condition has
occurred during interrupt processing. (Version
4.23 onwards.)

IOCTL_FLUSH_IRQEVENT

Flushes (discards) interrupt user data in the
driver including data in FIFO. (Version 4.35
onwards.)

IOCTL_EXPEDITE_READ_IRQEVENT

Causes current or following interrupt data buffer
for “read” interrupt event to be completed as
soon as possible. (Version 5.02 onwards.)

IOCTL_GET_IRQEVENT_AVAILABLE_-
TO_READ

Determines how much interrupt data is available
for a “read” interrupt event. (Version 5.02
onwards.)

7.3.1 Interrupt Data Transfer Types Supported

The IOCTL_ENABLE_IRQEVENT IOCTL call is used to enable an IRQ event. It allows the user to
configure the data to fetch during the interrupt service routine. The following data types are
supported:

 ISR_NODATA — reads zeroes
 ISR_READ_16COUNT — reads a timer counter channel
 ISR_READ_16COUNTSTAT — reads a TC channel's status and count (Version 4.40 onwards)
 ISR_READ_32COUNT — reads two chained counters
 ISR_READ_32COUNTSTAT — reads two TC channels' status and counts (Version 4.40 onwards)
 ISR_READ_PPIABC — reads data from all 3 PPI ports
 ISR_READ_PPIC — reads data from PPI port C (Version 2.00 onwards)
 ISR_PC27 — reads PC27 ADC port (Version 2.01 onwards)
 ISR_READ_DATA8 — reads data from 1 DIO port (Version 3.00 onwards)
 ISR_READ_DATA16 — reads data from 2 DIO ports (Version 3.00 onwards)
 ISR_READ_ADCS — reads ADC channels (Version 4.00 onwards)
 ISR_READ_ADCSNOFIFO — reads ADC channels (Version 4.02 onwards)
 ISR_READ_ADCSFIFO — reads ADC channels (Version 4.10 onwards)
 ISR_READ_ADCSASAP — reads ADC channels (Version 4.40 onwards)
 ISR_READ_2PPIABC — reads data from 6 PPI ports on 2 PPI chips (Version 4.35 onwards)
 ISR_READ_3PPIABC — reads data from 9 PPI ports on 3 PPI chips (Version 4.35 onwards)
 ISR_WRITE_DATA8 — writes data to 1 DIO port (Version 3.00 onwards)

AMPDIO DRIVERS

Page 239

 ISR_WRITE_DATA16 — writes data to 2 DIO ports (Version 3.00 onwards)
 ISR_WRITE_PPIABC — writes data to all 3 PPI ports (Version 3.00 onwards)
 ISR_WRITE_DACS — writes DAC channels (Version 4.00 onwards)
 ISR_WRITE_2DACS — writes 2 DAC channels (Version 4.00 onwards)
 ISR_WRITE_DACSNOFIFO — writes DAC channels (Version 4.02 onwards)
 ISR_WRITE_DACSFIFO — writes DAC channels (Version 4.10 onwards)
 ISR_WRITE_16COUNT — writes initial count of a timer channel (Version 4.35 onwards)
 ISR_WRITE_32COUNT — writes initial counts of two timer channels (Version 4.35 onwards)
 ISR_WRITE_2PPIABC — writes data to 6 PPI ports on 2 PPI chips (Version 4.35 onwards)
 ISR_WRITE_3PPIABC — writes data to 9 PPI ports on 3 PPI chips (Version 4.35 onwards)

AMPDIO DRIVERS

Page 240

APPENDIX A GLOSSARY OF TERMS

The following glossary explains some terms used in this manual and in data acquisition and control applications.

Active Filter: An electronic filter that combines active circuit devices with passive circuit elements such as resistors
and capacitors. Active filters typically have characteristics that closely match ideal filters.

ADC (A/D): Analog to Digital converter. q.v.

Alias Frequency: A false lower frequency component that appears in analog signal reconstructed from original
data acquired at an insufficient sampling rate.

Algorithm: A set of rules, with a finite number of steps, for solving a mathematical problem. An algorithm can be
used as a basis for a computer program.

Analog to Digital Converter (ADC): A device for converting an analog voltage to a parallel digital word where the
digital output code represents the magnitude of the input signal. See ‘Successive Approximation’.
Analog Switch: An electronic, single pole, two way switch capable of handling the full range of analog signal
voltage, and operating under the control of a logic signal.

Array: Data arranged in single or multidimensional rows and columns.
ASCII: American Standard Code for Information Interchange. A code that is commonly used to represent symbols in
computers.

Assembler: A program that converts a list of computer instructions written in a specific assembly language format
that can be executed by a specific processor.
Bandpass Filter: A type of electrical filter that allows a band of signals between two set frequencies to pass, while
attenuating all signal frequencies outside the bandpass range.

Base Address: A unique address set up on an I/O card to allow reference by the host computer. All registers are
located by an offset in relation to the base address.

BASIC: The most common computer language. BASIC is an acronym for Beginners All-purpose Symbolic
Instruction Code. BASIC is not rigorously structured and relies on English-like instructions which account for its
popularity.

Binary Coded Decimal (BCD): A system of binary numbering where each decimal digit 0 through 9 is represented
by a combination of four bits.

BIOS: Basic Input Output System. BIOS resides in ROM on a computer system board and provides device level
control for the major I/O devices on the system.

Bipolar: A signal being measured is said to be bipolar when the voltage on its 'high' terminal can be either of
positive or negative polarity in relation to its 'low' terminal.

Bit: Contraction of binary digit. The smallest unit of information. A bit represents the choice between a one or zero
value (mark or space in communications technology).

Buffer: A storage device used to compensate for a difference in rate of data flow, or time of occurrence of events,
when transferring data from one device to another. Also a device without storage that isolates two circuits.

Bus: Conductors used to interconnect individual circuitry in a computer. The set of conductors as a whole is called
a bus.

Byte: A binary element string operated on as a unit and usually shorter than a computer word. Normally eight bits.

C: A high level programming language, developed around the concept of structured programming and designed for
high operating speeds. Microsoft 'C' and Turbo 'C' are dialects of C.

Channel: One of several signal/data paths that may be selected.

Character: A letter, figure , number, punctuation or other symbol contained in a message or used in a control
function.

Code: A set of unambiguous rules specifying the way in which characters may be represented.

Conversion Time: The time required for a complete conversion of a value from analog to digital form (ADC) or
analog to digital form (DAC). Inverse of Conversion Rate.
Cold Junction: See Thermocouple Reference Junction

Cold Junction Compensation (CJC): A technique to compensate for thermocouple measurement offset when the
reference or cold junction is at a temperature other than 0° C.
Common Mode Rejection Ratio (CMR): A measure of the equipment's ability to reject common mode interference.
Usually expressed in decibels as the ratio between the common mode voltage and the error in the reading due to
this common mode voltage.

AMPDIO DRIVERS

Page 241

Common Mode Voltage: In a differential measurement system, the common mode voltage usually represents an
interfering signal. The common mode voltage is the average of the voltages on the two input signal lines with
respect to ground level of the measuring system.

Comparator: An electronic circuit used to compare two values and set an indicator that identifies which value is
greater.

Compiler: High level language used to pre-process a program in order to convert it to a form that a processor can
execute directly.

Contact Closure: The closing of a switch, often controlled by an electromagnetic or solid state relay.

Conversion Time: The time required, in an analog/digital input/output system, from the instant that a channel is
interrogated (such as with a read instruction) to the moment that accurate an accurate representation of the data is
available. This could include switching time, settling time, acquisition time , converter processing time etc.

Counter: In software, a memory location used by a program for the purpose of counting certain occurrences. In
hardware, a circuit that can count pulses.

Counter/Timer Device: Converts time-dependent digital signals to a form that can be further processed by the host
PC. Typical functions include pulse counting, frequency and pulse width measurement. This can relate to time,
number of events, speed etc.

Crosstalk: A phenomenon in which a signal in one or more channels interferes with a signal or signals in other
channels.

Current Loop: (a) Data communications method using presence or absence of current to signal logic ones
and zeros.

 (b) A method of analog signal transmission where the measured value is represented by a current.
The common current loop signal is in the range 4 to 20 mA, but other standards include 1 to 5 mA
or 10 to 50 mA.

DAC (D/A): Digital to Analog Converter. q.v.

Data Acquisition or Data Collection: Gathering information from sources such as sensors and transducers in an
accurate, timely and organised manner.

Debouncing: Either a hardware circuit or software delay to prevent false inputs from a bouncing relay or switch
contact.

Decibel (dB): A logarithmic representation of the ratio between two signal levels.

Digital-Analog Multiplier: Same as Multiplying DAC. q.v.

Digital Signal: A discrete or discontinuous signal; one whose various states are identified with discrete levels or
values.

Digital to Analog Converter: A device for converting a parallel digital word to an analog voltage, where the
magnitude of the output signal represents the value of the digital input.
DIP Switch: A set of switches contained in a dual in line package.

Drift: Small variations in a measured parameter over a period of time.

Drivers: Part of the software that is used to control a specific hardware device.

Expansion Slots: The spaces provided in a computer for expansion boards that enhance the basic operations of
the computer.

FIFO: First In First Out. A buffer memory that outputs data in the same order that they are input.

Form A, Form B, Form C Contacts: Relay contact sets which are normally open, normally closed and changeover
respectively.
Four Quadrant Operation: In a multiplying DAC, four quadrant operation means that both the reference signal and
the number represented by the digital input may both be either positive or negative polarity. The output obeys the
rules of multiplication for algebraic sign.

GAL (Generic Array Logic): Programmable logic device where the architecture and functionality of each output is
defined by the system designer.

Handshaking: Exchange of predetermined codes and signals between two data devices to establish and control a
connection.

Hardware: The visible parts of a computer system such as the circuit boards, chassis, peripherals, cables etc. It
does not include data or computer programs.

Hexadecimal (Hex): A numbering system to the base 16.

Input/Output (I/O): The process of transferring data from or to a computer system including communication
channels, operator interface devices or data acquisition and control channels.

Interface: A shared boundary defined by common physical interconnection characteristics, signal characteristics
and meanings of interchanged signals.

Interrupt: A computer signal indicating that the CPU should suspend its current task to service a designated
activity.

AMPDIO DRIVERS

Page 242

I/O Address: A method that allows the CPU to distinguish between different boards and I/O functions in a system.
See Base Address.

Latch: A device to store the state of a digital signal until it is changed by another external command signal. The
action of storing this signal.

Least Significant Bit (LSB): In a system in which a numerical magnitude is represented by a series of digits, the
least significant bit (binary digit) is the digit that carries the smallest value or weight.

Linearity: Compliance with a straight line law between the input and output of a device.

Load Voltage Sensing: A technique for maintaining accuracy of an analog signal at the load by monitoring the
voltage and compensating for errors due to cable and source resistance.

Micro Channel Architecture (MCA): A unique architecture defined by IBM™ to provide a standard input/output bus
for Personal System computers.
Monotonic: A DAC is said to be monotonic if the output increases as the digital input increases, with the result that
the output is always a single valued function of the input.
Most Significant Bit (MSB): In a system in which a numerical magnitude is represented by a series of digits, the
most significant bit (binary digit) is the digit that carries the greatest value or weight.
Multiplexer: A multiple way analog switch q.v., where a single path through the switch is selected by the value of a
digital control word.

Multiplying DAC: A Multiplying DAC (or Digital-Analog Multiplier) operates with varying or AC reference signals.
The output of a Multiplying DAC is proportional to the product of the analog ‘reference’ signal and the fractional
equivalent of the digital input number.

Noise: An undesirable electrical interference to a signal.
Normal Mode Signal: Aka Series mode signal. In a differential analog measuring system, the normal mode signal
is the required signal and is the difference between the voltages on the two input signal lines with respect to ground
level of the measuring system.

Offset: (a) A fixed, known voltage added to a signal.
 (b) The location of a register above the base address.

Pascal: A high level programming language originally developed as a tool for teaching the concepts of structured
programming. It has evolved into a powerful general-purpose language popular for writing scientific and business
programs. Borland Turbo Pascal is a dialect of Pascal.

Passive Filter: A filter circuit using only resistors, capacitors and inductors.
PC: Personal Computer (Also printed circuit - see PCB)

PCB: Printed Circuit Board

Port: An interface on a computer capable of communication with another device.

Range: Refers to the maximum allowable full-scale input or output signal for a specified performance.

Real Time: Data acted upon immediately instead of being accumulated and processed at a later time.

Reed Relay: An electro-mechanical relay where the contacts are enclosed in a hermetically sealed glass tube
which is filled with an inert gas.

Repeatability: The ability of a measuring system to give the same output or reading under repeated identical
conditions.

Resolution: A binary converter is said to have a resolution of n-bits when it is able to relate 2n distinct analog
values to the set of n-bit binary words.
Rollover: Symmetry of the positive and negative values in a bipolar conversion system.

RTD (Resistive Temperature Device): An electrical circuit element characterised by a defined coefficient of
resistivity.

Sample/Hold: A circuit which acquires an analog voltage and stores it for a period of time.

Sensor: Device that responds to a physical stimulus (heat, light, sound, pressure, motion etc.) producing a
corresponding electrical output.

Settling Time: The time taken for the signal appearing at the output of a device to settle to a new value caused by
a change of input signal.

Signal to Noise Ratio: Ratio of signal level to noise in a circuit. Normally expressed in decibels.

Simultaneous Sample/Hold: A data acquisition system in which several sample/hold circuits are used to
simultaneously sample a number of analog channels and hold these values for sequential conversion. One
sample/hold circuit per analog channel is required.

Software: The non-physical parts of a computer system that includes computer programs such as the operating
system, high level languages, applications program etc.

Spike: A transient disturbance of an electrical circuit.

Stability: The ability of an instrument or sensor to maintain a consistent output when a consistent input is applied.

AMPDIO DRIVERS

Page 243

Successive Approximation: An analog to digital conversion method that sequentially compares a series of binary
weighted values with the analog input signal to produce an output digital word in ‘n’ steps where ‘n’ is the number of
bits of the A/D Converter. q.v.

Symbol: The graphical representation of some idea. Letters and numerals are symbols.

Syntax: Syntax is the set of rules used for forming statements in a particular programming language.

Thermocouple: A thermocouple is two dissimilar electrical conductors, known as thermo-elements, so joined as to
produce a thermal emf when the measuring and reference junctions are at different temperatures.

Thermocouple Measuring Junction: The junction of a thermocouple which is subjected to the temperature being
measured.

Thermocouple Reference Junction: The junction of a thermocouple which is at a known temperature. aka Cold
Junction.

Throughput Rate: The maximum repetitive rate at which a data conversion system can operate with a specified
accuracy. It is determined by summing the various times required for each part of the system and then taking the
reciprocal of this time.

Transducer: Device that converts length, position, temperature, pressure, level or other physical variable to an
equivalent voltage or current accurately representing the original measurement.

Trigger: Pulse or signal used to start or stop a particular action. Frequently used to control data acquisition
processes.

Unipolar: A signal being measured is said to be unipolar when the voltage on its 'high' terminal is always the same
polarity (normally positive) in relation to its 'low' terminal.

Word: The standard number of bits that can be manipulated at once. Microprocessors typically have word lengths
of 8, 16 or 32 bits.

Wrap, Wraparound: Connection of a FIFO buffer such that the contents once loaded, are continuously circulated.

AMPDIO DRIVERS

Page 244

INDEX OF FUNCTIONS

AIOADCgroupHasFIFO, 208
AIOADCgroupIntChip, 207
AIOADCisAvailable, 206
AIOcountADCchans, 207
AIOcountADCgroups, 206
AIOcountDACchans, 210
AIOcountDACgroups, 209
AIODACgroupHasFIFO, 211
AIODACgroupIntChip, 210
AIODACisAvailable, 209
AIOgetADCchanMode, 212
AIOgetADCdata, 223
AIOgetADCgroupFIFOsize, 208
AIOgetADCpretriggerCount, 226
AIOgetDACchanMode, 217
AIOgetDACgroupFIFOsize, 211
AIOgetHWADCchanDiff, 214
AIOgetHWADCchanGain, 216
AIOgetHWADCchanMode, 212
AIOgetHWDACchanMode, 218
AIOgetHWDACchanRange, 220
AIOsetADCchanMode, 213
AIOsetADCconvSource, 222
AIOsetADCmultiplexer, 222
AIOsetADCstartAcquisitionTrigger, 224
AIOsetAllADCchanMode, 214
AIOsetAllDACchanMode, 220
AIOsetDACchanData, 227
AIOsetDACchanMode, 218
AIOsetDACchanWaveform, 228
AIOsetDACconvSource, 227
AIOsetHWADCchanDiff, 215
AIOsetHWADCchanGain, 216
AIOsetHWADCchanMode, 213
AIOsetHWDACchanMode, 219
AIOsetHWDACchanRange, 221
AIOstartADCconversion, 223
AIOstartDACconversion, 230
allocateIntegerBuf, 102
allocateLongBuf, 102
copyFromIntegerBuf, 106
copyFromLongBuf, 106
copyToIntegerBuf, 105
copyToLongBuf, 105
DIO_TC_dllVersion, 92
DIO_TC_driverVersion, 91
DIO_TC_getrealtimepriority, 99
DIO_TC_GetResetOnRegister, 94
DIO_TC_hardwareVersion, 92
DIO_TC_IOCTL, 232
DIO_TC_realHardwareVersion, 93
DIO_TC_restorenormalpriority, 100
DIO_TC_SetResetOnRegister, 94
DIOfreeSwitchMatrix, 179
DIOgetData, 175
DIOgetDataEx, 178
DIOgetMode, 173
DIOgetModeEx, 176
DIOgetSwitchStatus, 179
DIOisAvailable, 172

DIOsetChanWidth, 174
DIOsetData, 175
DIOsetDataEx, 177
DIOsetMode, 172
DIOsetModeEx, 176
DIOsetSwitchMatrix, 178
disableInterrupts, 95
enableInterrupts, 95
FreeBoard, 91
freeIntegerBuf, 102
freeLongBuf, 103
GetBoardBase, 90
GetBoardIRQ, 90
GetBoardModel, 89
GetBoardPciPosition, 90
getIntegerIntItem, 107
getIntMask, 97
getIntStat, 97
getLongIntItem, 107
interruptsEnabledP, 96
PC24setData, 232
PC27getData, 231
PC27SetMultiplexer, 231
PC27StartConversion, 231
readIntegerBuf, 103
readLongBuf, 104
registerBoard, 87
registerBoardEx, 88
registerBoardPci, 88
setIntMask, 96
TCchangeOneShotPulseTrainCount, 151
TCchangeOneShotPulseTrainDuration, 151
TCchangeOneShotPulseTrainTrigger, 150
TCchangePeriodicPulseTrainCount, 140
TCchangePeriodicPulseTrainDuration, 140
TCchangePeriodicPulseTrainFreq, 139
TCchangePeriodicPulseTrainGate, 138
TCchangePWMTrainDutyCycle, 161
TCchangePWMTrainFreq, 160
TCchangePWMTrainGate, 159
TCchangePWPulseDutyCycle, 155
TCchangePWPulsePeriod, 155
TCchangeRestrictedPulseTrainCount, 146
TCchangeRestrictedPulseTrainFreq, 145
TCchangeRestrictedPulseTrainGate, 144
TCcheckUserInterruptDataAvailable, 204
TCcheckUserInterruptError, 201
TCcontrolOneShotPulseTrain, 152
TCcontrolPeriodicPulseTrain, 141
TCcontrolPWMTrain, 162
TCcontrolPWPulse, 156
TCcontrolRestrictedPulseTrain, 146
TCdisableInterruptChip, 99
TCdisableUserInterrupt, 205
TCdivideFreq, 167
TCdriveNCBufferUserInterrupt, 198
TCenableInterruptChip, 98
TCenableUserInterrupt, 204
TCexpediteReadUserInterrupt, 203
TCflushUserInterrupt, 202

AMPDIO DRIVERS

Page 245

TCfreeAstable, 133
TCfreeDCO, 171
TCfreeDiffCounters, 124
TCfreeEventCounter, 130
TCfreeEventRecorder, 127
TCfreeOneShotPulseTrain, 153
TCfreePeriodicPulseTrain, 142
TCfreePWMTrain, 163
TCfreePWPulse, 157
TCfreeResource, 108
TCfreeRestrictedPulseTrain, 147
TCfreeStopwatch, 128
TCfreeUserInterrupt, 185
TCgenerateAccFreq, 134
TCgenerateFreq, 133
TCgeneratePulse, 135
TCgetClock, 110
TCgetCount, 118
TCgetCounts, 119
TCgetDiffCount, 123
TCgetElapsedTime, 126
TCgetEventCount, 130
TCgetExtFreq, 164
TCgetExtFreqRestricted, 165
TCgetExtPeriod, 163
TCgetGate, 112
TCgetInitialCount, 120
TCgetInterruptThreadPriority, 100
TCgetLinkedClockChannel, 110
TCgetLinkedGateChannel, 113
TCgetMode, 115
TCgetRatio, 123
TCgetStatus, 115
TCgetTimeStr, 127
TCgetUpCount, 118
TCisAvailable, 108
TCmultiplyFreq, 166
TCresetEventCounter, 129
TCsetAstable, 132
TCsetBufferUserInterrupt, 186
TCsetBufferUserInterrupt2, 190
TCsetBufferUserInterruptAIO, 188
TCsetClock, 109

TCsetCount, 116
TCsetCounts, 117
TCsetDCO, 168
TCsetDiffCounters, 121
TCsetEventCounter, 128
TCsetEventRecorder, 126
TCsetGate, 111
TCsetInterruptThreadPriority, 101
TCsetMode, 114
TCsetMonoShot, 131
TCsetNCBufferUserInterrupt, 193
TCsetNCBufferUserInterrupt2, 196
TCsetNCBufferUserInterruptAIO, 195
TCsetOneShotPulseTrain, 148
TCsetPeriodicPulseTrain, 136
TCsetPWMTrain, 157
TCsetPWPulse, 153
TCsetRestrictedPulseTrain, 143
TCsetStopwatch, 124
TCsetUserCO, 169
TCsetUserCOLevel, 171
TCsetUserInterrupt, 180
TCsetUserInterrupt2, 183
TCsetUserInterruptAIO, 182
TCstartStopwatch, 125
TCUserCBCallback, 192
TCUserCCallback, 185
TCUserCOCallback, 170
TCVdivideFreq. See TCdivideFreq
TCVgenerateAccFreq. See TCgenerateAccFreq
TCVgenerateFreq. See TCgenerateFreq
TCVgeneratePulse. See TCgeneratePulse
TCVgetExtFreq. See TCgetExtFreq
TCVgetExtPeriod. See TCgetExtPeriod
TCVgetRatio. See TCgetRatio
TCVmultiplyFreq. See TCmultiplyFreq
TCVsetAstable. See TCsetAstable
TCVsetDCO. See TCsetDCO
TCVsetMonoShot. See TCsetMonoShot
TCwaitMultiNCBufferReady, 200
TCwaitNCBufferReady, 199
writeIntegerBuf, 104
writeLongBuf, 104

	1 INTRODUCTION
	1.1 Windows AMPDIO Drivers
	1.2 Products supported
	1.2.1 PC200 Series
	1.2.2 Analogue Input / Output Cards
	1.2.2.1 Analogue Output Cards
	1.2.2.2 Analogue Input Cards
	1.2.2.3 Multi-function Analogue Cards

	1.3 Features of the Software
	1.3.1 Overview
	1.3.2 Typical Applications

	1.4 Windows Installation Program
	1.5 Technical Support

	2 GETTING STARTED
	2.1 General Information
	2.2 Installing the Software
	2.2.1 Software Installation from CD-ROM

	2.3 Installing ADIO cards in the system
	2.3.1 Installing a card in Windows 7
	2.3.1.1 PCI Card
	2.3.1.2 ISA Card

	2.3.2 Installing a card in Windows Vista
	2.3.2.1 PCI Card
	2.3.2.2 ISA Card

	2.3.3 Installing a card in Windows XP
	2.3.3.1 PCI Card
	2.3.3.2 ISA Card

	2.3.4 Installing a card in Windows 2000
	2.3.4.1 PCI Card
	2.3.4.2 ISA Card

	2.3.5 Installing a card in Windows NT 4.0
	2.3.5.1 PCI Card
	2.3.5.2 ISA Card

	2.3.6 Installing a card In Windows 95/98/ME
	2.3.6.1 PCI Card
	2.3.6.2 ISA Card

	2.3.7 Installing Multiple Boards in a Single Host PC

	3 DRIVER FUNCTIONS AND CONCEPTS
	3.1 Timer Counter Functions
	3.1.1 Differential Counter
	3.1.2 Monostable Multivibrator
	3.1.3 Astable Multivibrator
	3.1.4 Stopwatch
	3.1.5 Frequency/Period Measurement
	3.1.6 Frequency Generation
	3.1.7 Frequency Multiplication
	3.1.8 Pulse Train Generation
	3.1.9 Pulse Width Modulation
	3.1.10 Event Counter

	3.2 Digital I/O Functions
	3.2.1 Basic Digital I/O
	3.2.2 Switch Matrix

	3.3 Basic Analogue I/O Functions
	3.3.1 Determining Analogue Resources
	3.3.2 Channel Masks
	3.3.3 Channel Groups
	3.3.4 Configuring Channels as Bipolar or Unipolar
	3.3.5 Basic Analogue Input
	3.3.6 Basic Analogue Output
	3.3.7 Configuring Analogue Resources on PCI Cards

	3.4 Using Interrupts
	3.4.1 Event Recorder
	3.4.2 Digitally Controlled Oscillator
	3.4.3 Interrupt Callback
	3.4.3.1 Basic Interrupt Callback
	3.4.3.2 Transferring Buffers Under Interrupt Control
	3.4.3.2.1 Acquiring AC Analogue Signals
	3.4.3.2.1.1 Controlling Timing for Reading Multiple Analogue Channels
	3.4.3.2.1.2 Controlling Start of Aquisition on PCI230+ and PCI260+

	3.4.3.2.2 Playing AC Analogue Signals

	3.4.3.3 Using Interrupts Without Callbacks

	4 SOFTWARE INSTALLED WITH THE DRIVER
	4.1 Installed Software
	4.2 Visual Basic Examples
	4.2.1 Digital IO — INOUT.EXE
	4.2.2 Timer — BASICTMR.EXE
	4.2.3 Frequency Multiplier — FREQMULT.EXE
	4.2.4 Event Recorder — EVENTREC.EXE
	4.2.5 Digital IO With Interrupts — DIO_EX.EXE
	4.2.6 Voltmeter — METER.EXE
	4.2.7 D-to-A Converter — DACSET.EXE
	4.2.8 Registerable Board Lister — REGBOARD.EXE
	4.2.9 Stopwatch — STOPWATCH.EXE

	4.3 Delphi Examples
	4.3.1 Timer — TIMER.EXE
	4.3.2 Digital IO — INOUT.EXE
	4.3.3 Digital IO With Interrupts — PDIO_EX.EXE
	4.3.4 Voltmeter — METER.EXE
	4.3.5 Oscilloscope — OSSCOPE.EXE
	4.3.6 Signal Generator — SIGGEN.EXE

	4.4 Agilent VEE Pro / Hewlett Packard HP VEE Examples
	4.4.1 ADC Test — ADCTEST.VEE
	4.4.2 DAC Test — DACTEST.VEE
	4.4.3 Digital Input — DIGINPUT.VEE
	4.4.4 Timer Demo — TIMERDEM.VEE

	4.5 Win32 Console Examples in C
	4.5.1 Capture Analogue Input to Comma-Separated Variables (CSV) or Binary File

	4.6 Visual Basic .NET Examples
	4.6.1 Digital IO — InOut_VBNET.exe
	4.6.2 Digital IO With Interrupts — DIO_EX_VBNET.exe and DIO_EX2_VBNET.exe
	4.6.3 Voltmeter — Meter_VBNET.exe

	4.7 Visual C# .NET Examples
	4.7.1 Digital IO — InOut_CSHARP.exe
	4.7.2 Digital IO With Interrupts — DIO_EX_CSHARP.exe and DIO_EX2_CSHARP.exe
	4.7.3 Voltmeter — Meter_CSHARP.exe

	4.8 DIO_TC.DLL Source Code
	4.9 SYS_DLLS

	5 STRUCTURE AND ASSIGNMENTS OF THE REGISTERS
	5.1 Register Assignments on Series 200 DIO Cards
	5.2 Register Grouping
	5.2.1 Cluster X, Y and Z Groups
	5.2.2 Counter Connection Register Group
	5.2.3 Interrupts Group

	5.3 The Drivers View of The Register Layout
	5.4 The Register Details
	5.4.1 82C55 Programmable Peripheral Interface Registers
	5.4.1.1 82C55 Programmable Peripheral Interface PPI Data Register Port A
	5.4.1.2 82C55 Programmable Peripheral Interface PPI Data Register Port B
	5.4.1.3 82C55 Programmable Peripheral Interface PPI Data Register Port C
	5.4.1.4 82C55 Programmable Peripheral Interface PPI Command Register

	5.4.2 82C54Counter Timer Registers
	5.4.2.1 82C54 Counter 0 Data Register
	5.4.2.2 82C54 Counter 1 Data Register
	5.4.2.3 Counter 2 Data Register
	5.4.2.4 Counter/Timer Control Register

	5.4.3 Clock and Gate Configuration Registers
	5.4.3.1 Group Clock Connection Registers
	5.4.3.2 Group Gate Connection Registers

	6 PROGRAMMING WITH THE AMPDIO DRIVER
	6.1 Windows DLL and Examples
	6.2 Support in DOS
	6.2.1 Windows Library Source Code

	6.3 Using the Dynamic Link Library
	6.3.1 C/C++
	6.3.1.1 Microsoft C/C++
	6.3.1.2 Borland C++

	6.3.2 Visual Basic 5.0 and 6.0
	6.3.3 Delphi 3.0 Onwards
	6.3.4 Visual Basic .NET
	6.3.5 Visual C# .NET

	6.4 DIO_TC.DLL Library Functions
	6.4.1 Initialization Functions
	6.4.1.1 Register a Board with the Library — registerBoard XE "registerBoard"
	6.4.1.2 Extended Register Board Function — registerBoardEx XE "registerBoardEx"
	6.4.1.3 Register a PCI Board by Model, Bus and Slot Position — registerBoardPci XE "registerBoardPci"
	6.4.1.4 Get the Model Number of a Board — GetBoardModel XE "GetBoardModel"
	6.4.1.5 Get Board Base Address — GetBoardBase XE "GetBoardBase"
	6.4.1.6 Get Board IRQ — GetBoardIRQ XE "GetBoardIRQ"
	6.4.1.7 Get Board PCI Bus Position — GetBoardPciPosition XE "GetBoardPciPosition"
	6.4.1.8 Unregister a Board — FreeBoard XE "FreeBoard"
	6.4.1.9 Get Driver Version — DIO_TC_driverVersion XE "DIO_TC_driverVersion"
	6.4.1.10 Get DLL Version — DIO_TC_dllVersion XE "DIO_TC_dllVersion"
	6.4.1.11 Get Hardware Version — DIO_TC_hardwareVersion XE "DIO_TC_hardwareVersion"
	6.4.1.12 Get Real Hardware Version — DIO_TC_realHardwareVersion XE "DIO_TC_realHardwareVersion"
	6.4.1.13 Control Hardware Reinitialization — DIO_TC_SetResetOnRegister XE "DIO_TC_SetResetOnRegister"
	6.4.1.14 Check Whether Hardware Will be Reinitialized — DIO_TC_GetResetOnRegister XE "DIO_TC_GetResetOnRegister"

	6.4.2 Interrupt Control Functions
	6.4.2.1 Enable a Board's Interrupts — enableInterrupts XE "enableInterrupts"
	6.4.2.2 Disable a Board's Interrupts — disableInterrupts XE "disableInterrupts"
	6.4.2.3 Check whether a Board's Interrupts are Enabled — interruptsEnabledP XE "interruptsEnabledP"
	6.4.2.4 Enable a Board's Interrupt Source(s) — setIntMask XE "setIntMask"
	6.4.2.5 Check Which Interrupt Sources are Enabled — getIntMask XE "getIntMask"
	6.4.2.6 Read Interrupt Status Register — getIntStat XE "getIntStat"
	6.4.2.7 Enable an Individual Interrupt Source — TCenableInterruptChip XE "TCenableInterruptChip"
	6.4.2.8 Disable an Individual Interrupt Source — TCdisableInterruptChip XE "TCdisableInterruptChip"

	6.4.3 Thread Priority Control
	6.4.3.1 Set Real Time Priority — DIO_TC_getrealtimepriority XE "DIO_TC_getrealtimepriority"
	6.4.3.2 Set Normal Priority — DIO_TC_restorenormalpriority XE "DIO_TC_restorenormalpriority"
	6.4.3.3 Get Priority of User Interrupt Thread — TCgetInterruptThreadPriority XE "TCgetInterruptThreadPriority"
	6.4.3.4 Set Priority of User Interrupt Thread — TCsetInterruptThreadPriority XE "TCsetInterruptThreadPriority"

	6.4.4 Data Buffer Functions
	6.4.4.1 Allocate a Short Integer Data Buffer — allocateIntegerBuf XE "allocateIntegerBuf"
	6.4.4.2 Allocate a Long Integer Data Buffer — allocateLongBuf XE "allocateLongBuf"
	6.4.4.3 Free up a Short Integer Data Buffer — freeIntegerBuf XE "freeIntegerBuf"
	6.4.4.4 Free up a Long Integer Data Buffer — freeLongBuf XE "freeLongBuf"
	6.4.4.5 Read Data from a Short Integer Buffer — readIntegerBuf XE "readIntegerBuf"
	6.4.4.6 Read Data from a Long Integer Buffer — readLongBuf XE "readLongBuf"
	6.4.4.7 Write Data to a Short Integer Buffer — writeIntegerBuf XE "writeIntegerBuf"
	6.4.4.8 Write Data to a Long Integer Buffer — writeLongBuf XE "writeLongBuf"
	6.4.4.9 Copy a Block of Data to a Short Integer Buffer — copyToIntegerBuf XE "copyToIntegerBuf"
	6.4.4.10 Copy a Block of Data to a Long Integer Buffer — copyToLongBuf XE "copyToLongBuf"
	6.4.4.11 Copy a Block of Data from a Short Integer Buffer — copyFromIntegerBuf XE "copyFromIntegerBuf"
	6.4.4.12 Copy a Block of Data from a Long Integer Buffer — copyFromLongBuf XE "copyFromLongBuf"
	6.4.4.13 Query Current Interrupt Position within a Short Integer Data Buffer — getIntegerIntItem XE "getIntegerIntItem"
	6.4.4.14 Query Current Interrupt Position within a Long Integer Data Buffer — getLongIntItem XE "getLongIntItem"

	6.4.5 Basic Timer/Counter Functions
	6.4.5.1 Test if Timer/Counter is Free — TCisAvailable XE "TCisAvailable"
	6.4.5.2 Free-up Timer/Counter — TCfreeResource XE "TCfreeResource"
	6.4.5.3 Connect Timer/Counter Clock Source — TCsetClock XE "TCsetClock"
	6.4.5.4 Get Connected Timer/Counter Clock Source — TCgetClock XE "TCgetClock"
	6.4.5.5 Get Linked Clock Channel — TCgetLinkedClockChannel XE "TCgetLinkedClockChannel"
	6.4.5.6 Connect Timer/Counter Gate Source — TCsetGate XE "TCsetGate"
	6.4.5.7 Get Connected Timer/Counter gate Source — TCgetGate XE "TCgetGate"
	6.4.5.8 Get Linked Gate Channel — TCgetLinkedGateChannel XE "TCgetLinkedGateChannel"
	6.4.5.9 Configure Timer/Counter Mode — TCsetMode XE "TCsetMode"
	6.4.5.10 Read Timer/Counter Status — TCgetStatus XE "TCgetStatus"
	6.4.5.11 Get Timer/Counter Mode — TCgetMode XE "TCgetMode"
	6.4.5.12 Set Timer Count Value — TCsetCount XE "TCsetCount"
	6.4.5.13 Set two Timer Count Values — TCsetCounts XE "TCsetCounts"
	6.4.5.14 Read Timer's current Count Value — TCgetCount XE "TCgetCount"
	6.4.5.15 Read Timer's current Up-Count — TCgetUpCount XE "TCgetUpCount"
	6.4.5.16 Reads Two Timer’s current Count Values — TCgetCounts XE "TCgetCounts"
	6.4.5.17 Gets a Timer’s Initial Count Value — TCgetInitialCount XE "TCgetInitialCount"

	6.4.6 Differential Counter Functions
	6.4.6.1 Set-up Differential Counter Pair — TCsetDiffCounters XE "TCsetDiffCounters"
	6.4.6.2 Read Differential Count — TCgetDiffCount XE "TCgetDiffCount"
	6.4.6.3 Read Differential Ratio — TCgetRatio XE "TCgetRatio"
	6.4.6.4 Free Differential Counter Pair — TCfreeDiffCounters XE "TCfreeDiffCounters"

	6.4.7 Millisecond Stopwatch, Event Recorder and Event Counting Functions
	6.4.7.1 Prepare a Millisecond Stopwatch — TCsetStopwatch XE "TCsetStopwatch"
	6.4.7.2 Start a Millisecond Stopwatch — TCstartStopwatch XE "TCstartStopwatch"
	6.4.7.3 Get Stopwatch Elapsed Time — TCgetElapsedTime XE "TCgetElapsedTime"
	6.4.7.4 Prepare an Event Time Recorder — TCsetEventRecorder XE "TCsetEventRecorder"
	6.4.7.5 Free-up Event Recorder Timer and Digital Input Channels — TCfreeEventRecorder XE "TCfreeEventRecorder"
	6.4.7.6 Convert Milliseconds into Time String — TCgetTimeStr XE "TCgetTimeStr"
	6.4.7.7 Free-up Stopwatch Counter/Timers — TCfreeStopwatch XE "TCfreeStopwatch"
	6.4.7.8 Prepare a 32-Bit Event Counter — TCsetEventCounter XE "TCsetEventCounter"
	6.4.7.9 Reset a 32-bit Event Counter — TCresetEventCounter XE "TCresetEventCounter"
	6.4.7.10 Read a 32-bit Event Counter — TCgetEventCount XE "TCgetEventCount"
	6.4.7.11 Free up 32-bit Event Counter — TCfreeEventCounter XE "TCfreeEventCounter"

	6.4.8 Frequency/Pulse Generation Functions
	6.4.8.1 Send Monostable Pulse — TCsetMonoShot XE "TCsetMonoShot"
	6.4.8.2 Generate Astable Multivibrator Waveform — TCsetAstable XE "TCsetAstable"
	6.4.8.3 Free-up Astable Multivibrator Counter/Timers — TCfreeAstable XE "TCfreeAstable"
	6.4.8.4 Generate a Frequency — TCgenerateFreq XE "TCgenerateFreq"
	6.4.8.5 Generate an Accurate Frequency — TCgenerateAccFreq XE "TCgenerateAccFreq"
	6.4.8.6 Generate a Pulse — TCgeneratePulse XE "TCgeneratePulse"
	6.4.8.7 Set up a Periodic Pulse Train Generator — TCsetPeriodicPulseTrain XE "TCsetPeriodicPulseTrain"
	6.4.8.8 Change Periodic Pulse Train’s Gate Input — TCchangePeriodicPulseTrainGate XE "TCchangePeriodicPulseTrainGate"
	6.4.8.9 Change Periodic Pulse Train’s Train Frequency — TCchangePeriodicPulseTrainFreq XE "TCchangePeriodicPulseTrainFreq"
	6.4.8.10 Change Periodic Pulse Train’s Pulse Count — TCchangePeriodicPulseTrainCount XE "TCchangePeriodicPulseTrainCount"
	6.4.8.11 Change Periodic Pulse Train’s Train Duration — TCchangePeriodicPulseTrainDuration XE "TCchangePeriodicPulseTrainDuration"
	6.4.8.12 Control a Periodic Pulse Train Generator's Timer Channels — TCcontrolPeriodicPulseTrain XE "TCcontrolPeriodicPulseTrain"
	6.4.8.13 Free a Periodic Pulse Train Generator — TCfreePeriodicPulseTrain XE "TCfreePeriodicPulseTrain"
	6.4.8.14 Set up a Restricted Periodic Pulse Train Generator — TCsetRestrictedPulseTrain XE "TCsetRestrictedPulseTrain"
	6.4.8.15 Change Restricted Periodic Pulse Train’s Gate Input — TCchangeRestrictedPulseTrainGate XE "TCchangeRestrictedPulseTrainGate"
	6.4.8.16 Change Restricted Periodic Pulse Train’s Frequency — TCchangeRestrictedPulseTrainFreq XE "TCchangeRestrictedPulseTrainFreq"
	6.4.8.17 Change Restricted Periodic Pulse Train’s Pulse Count — TCchangeRestrictedPulseTrainCount XE "TCchangeRestrictedPulseTrainCount"
	6.4.8.18 Control a Restricted Periodic Pulse Train Generator's Timer Channels — TCcontrolRestrictedPulseTrain XE "TCcontrolRestrictedPulseTrain"
	6.4.8.19 Free a Restricted Periodic Pulse Train Generator — TCfreeRestrictedPulseTrain XE "TCfreeRestrictedPulseTrain"
	6.4.8.20 Set up a Hardware-Triggered One-Shot Pulse Train Generator — TCsetOneShotPulseTrain XE "TCsetOneShotPulseTrain"
	6.4.8.21 Change One-Shot Pulse Train’s Trigger Input — TCchangeOneShotPulseTrainTrigger XE "TCchangeOneShotPulseTrainTrigger"
	6.4.8.22 Change One-Shot Pulse Train’s Pulse Count — TCchangeOneShotPulseTrainCount XE "TCchangeOneShotPulseTrainCount"
	6.4.8.23 Change One-Shot Pulse Train’s Train Duration — TCchangeOneShotPulseTrainDuration XE "TCchangeOneShotPulseTrainDuration"
	6.4.8.24 Control a Hardware-Triggered One-Shot Pulse Train Generator's Timer Channels — TCcontrolOneShotPulseTrain XE "TCcontrolOneShotPulseTrain"
	6.4.8.25 Free a Hardware-Triggered One-Shot Pulse Train Generator — TCfreeOneShotPulseTrain XE "TCfreeOneShotPulseTrain"
	6.4.8.26 Set up a Programmable Width Pulse Generator — TCsetPWPulse XE "TCsetPWPulse"
	6.4.8.27 Change Programmable Width Pulse Generator's Duty Cycle — TCchangePWPulseDutyCycle XE "TCchangePWPulseDutyCycle"
	6.4.8.28 Change Programmable Width Pulse Generator's Period — TCchangePWPulsePeriod XE "TCchangePWPulsePeriod"
	6.4.8.29 Control a Programmable Width Pulse Generator's Timer Channel — TCcontrolPWPulse XE "TCcontrolPWPulse"
	6.4.8.30 Free a Programmable Width Pulse Generator — TCfreePWPulse XE "TCfreePWPulse"
	6.4.8.31 Set up a Pulse Width Modulated Pulse Train Generator — TCsetPWMTrain XE "TCsetPWMTrain"
	6.4.8.32 Change Pulse Width Modulated Pulse Train Generator's Gate — TCchangePWMTrainGate XE "TCchangePWMTrainGate"
	6.4.8.33 Change Pulse Width Modulated Pulse Train Generator's Frequency — TCchangePWMTrainFreq XE "TCchangePWMTrainFreq"
	6.4.8.34 Change Pulse Width Modulated Pulse Train Generator's Duty Cycle — TCchangePWMTrainDutyCycle XE "TCchangePWMTrainDutyCycle"
	6.4.8.35 Control a Pulse Width Modulated Pulse Train Generator's Timer Channels — TCcontrolPWMTrain XE "TCcontrolPWMTrain"
	6.4.8.36 Free a Pulse Width Modulated Pulse Train Generator — TCfreePWMTrain XE "TCfreePWMTrain"

	6.4.9 Frequency Input and Regeneration Functions
	6.4.9.1 Measure Period of an External Signal — TCgetExtPeriod XE "TCgetExtPeriod"
	6.4.9.2 Measure Frequency of an External Signal — TCgetExtFreq XE "TCgetExtFreq"
	6.4.9.3 Measure Frequency of an External Signal Over a Fixed Period — TCgetExtFreqRestricted XE "TCgetExtFreqRestricted"
	6.4.9.4 Multiply an External Frequency — TCmultiplyFreq XE "TCmultiplyFreq"
	6.4.9.5 Divide an External Frequency — TCdivideFreq XE "TCdivideFreq"

	6.4.10 Digitally Controlled Oscillator Functions
	6.4.10.1 Prepare a Digitally-Controlled Oscillator — TCsetDCO XE "TCsetDCO"
	6.4.10.2 Prepare a User-Controlled Oscillator — TCsetUserCO XE "TCsetUserCO"
	6.4.10.3 User Controlled Oscillator Callback — TCUserCOCallback XE "TCUserCOCallback"
	6.4.10.4 Set User Controlled Oscillator Output Level — TCsetUserCOLevel XE "TCsetUserCOLevel"
	6.4.10.5 Free-up a DCO or User CO’s Timer/Counters — TCfreeDCO XE "TCfreeDCO"

	6.4.11 Digital Input/Output Functions
	6.4.11.1 Test if Digital I/O Chip is Free — DIOisAvailable XE "DIOisAvailable"
	6.4.11.2 Configure a Digital I/O Port for Input or Output — DIOsetMode XE "DIOsetMode"
	6.4.11.3 Check Digital I/O Port Direction — DIOgetMode XE "DIOgetMode"
	6.4.11.4 Re-define Channel Width within a Digital I/O Chip — DIOsetChanWidth XE "DIOsetChanWidth"
	6.4.11.5 Send Digital Output Data — DIOsetData XE "DIOsetData"
	6.4.11.6 Read Digital Input Data — DIOgetData XE "DIOgetData"
	6.4.11.7 Configure a Digital I/O Port Mode — DIOsetModeEx XE "DIOsetModeEx"
	6.4.11.8 Check a Digital I/O Port's Mode — DIOgetModeEx XE "DIOgetModeEx"
	6.4.11.9 Write to Digital Output Port — DIOsetDataEx XE "DIOsetDataEx"
	6.4.11.10 Read Digital Input Data Port — DIOgetDataEx XE "DIOgetDataEx"

	6.4.12 Switch Scanner Matrix Functions
	6.4.12.1 Set up a Switch Scanner Matrix — DIOsetSwitchMatrix XE "DIOsetSwitchMatrix"
	6.4.12.2 Query Status of a Switch within the Scan Matrix — DIOgetSwitchStatus XE "DIOgetSwitchStatus"
	6.4.12.3 Free-up the Digital I/O Chip(s) from a Switch Matrix — DIOfreeSwitchMatrix XE "DIOfreeSwitchMatrix"

	6.4.13 Basic User Interrupt Callbacks
	6.4.13.1 Prepare a Basic User Interrupt — TCsetUserInterrupt XE "TCsetUserInterrupt"
	6.4.13.2 Prepare a Basic User Interrupt for Analogue Input — TCsetUserInterruptAIO XE "TCsetUserInterruptAIO"
	6.4.13.3 Prepare a Basic User Interrupt for Miscellaneous Input — TCsetUserInterrupt2 XE "TCsetUserInterrupt2"
	6.4.13.4 Basic User Interrupt Callback — TCUserCCallback XE "TCUserCCallback"
	6.4.13.5 Free up a User Interrupt — TCfreeUserInterrupt XE "TCfreeUserInterrupt"

	6.4.14 Buffered User Interrupt Callbacks
	6.4.14.1 Prepare a Buffered User Interrupt — TCsetBufferUserInterrupt XE "TCsetBufferUserInterrupt"
	6.4.14.2 Prepare a Buffered User Interrupt for Analogue I/O — TCsetBufferUserInterruptAIO XE "TCsetBufferUserInterruptAIO"
	6.4.14.3 Prepare a Buffered User Interrupt for Miscellaneous I/O — TCsetBufferUserInterrupt2 XE "TCsetBufferUserInterrupt2"
	6.4.14.4 Buffered User Interrupt Callback — TCUserCBCallback XE "TCUserCBCallback"

	6.4.15 Non-Callback Buffered User Interrupts
	6.4.15.1 Prepare a Non-Callback Buffered User Interrupt — TCsetNCBufferUserInterrupt XE "TCsetNCBufferUserInterrupt"
	6.4.15.2 Prepare a Non-Callback Buffered User Interrupt for Analogue I/O — TCsetNCBufferUserInterruptAIO XE "TCsetNCBufferUserInterruptAIO"
	6.4.15.3 Prepare a Non-Callback Buffered User Interrupt for Miscellaneous I/O — TCsetNCBufferUserInterrupt2 XE "TCsetNCBufferUserInterrupt2"
	6.4.15.4 Transfer Data for Non-Callback Buffered User Interrupt — TCdriveNCBufferUserInterrupt XE "TCdriveNCBufferUserInterrupt"
	6.4.15.5 Poll or Wait for Interrupt Data Buffer Ready for Non-Callback Buffered User Interrupt — TCwaitNCBufferReady XE "TCwaitNCBufferReady"
	6.4.15.6 Poll or Wait for Interrupt Data Buffer Ready for Multiple Non-Callback Buffered User Interrupts — TCwaitMultiNCBufferReady XE "TCwaitMultiNCBufferReady"

	6.4.16 Miscellaneous Interrupt Handling Functions
	6.4.16.1 Check User Interrupt for Occurrence of Error — TCcheckUserInterruptError XE "TCcheckUserInterruptError"
	6.4.16.2 Flush (Discard) User Interrupt Data — TCflushUserInterrupt XE "TCflushUserInterrupt"
	6.4.16.3 Expedite Read User Interrupt — TCexpediteReadUserInterrupt XE "TCexpediteReadUserInterrupt"
	6.4.16.4 Check User Interrupt Data Available — TCcheckUserInterruptDataAvailable XE "TCcheckUserInterruptDataAvailable"
	6.4.16.5 Enable a User Interrupt — TCenableUserInterrupt XE “TCenableUserInterrupt”
	6.4.16.6 Disable a User Interrupt — TCdisableUserInterrupt XE “TCdisableUserInterrupt”

	6.4.17 Analogue I/O Resource Management
	6.4.17.1 Test if ADC Interrupt Source is Free — AIOADCisAvailable XE “AIOADCisAvailable”
	6.4.17.2 Determine Number of ADC Channel Groups — AIOcountADCgroups XE “AIOcountADCgroups”
	6.4.17.3 Determine Number of ADC Channels in a Group — AIOcountADCchans XE “AIOcountADCchans”
	6.4.17.4 Determine ADC Channel Group’s Interrupt Source — AIOADCgroupIntChip XE “AIOADCgroupIntChip”
	6.4.17.5 Determine whether ADC Channel Group has a FIFO — AIOADCgroupHasFIFO XE “AIOADCgroupHasFIFO”
	6.4.17.6 Determine whether ADC Channel Group has a FIFO and Get its Size — AIOgetADCgroupFIFOsize XE “AIOgetADCgroupFIFOsize”
	6.4.17.7 Test if DAC Interrupt Source is Free — AIODACisAvailable XE “AIODACisAvailable”
	6.4.17.8 Determine Number of DAC Channel Groups — AIOcountDACgroups XE “AIOcountDACgroups”
	6.4.17.9 Determine Number of DAC Channels in a Group — AIOcountDACchans XE “AIOcountDACchans”
	6.4.17.10 Determine DAC Channel Group’s Interrupt Source — AIODACgroupIntChip XE “AIODACgroupIntChip”
	6.4.17.11 Determine whether DAC Channel Group has a FIFO — AIODACgroupHasFIFO XE “AIODACgroupHasFIFO”
	6.4.17.12 Determine whether DAC Channel Group has a FIFO and Get its Size — AIOgetDACgroupFIFOsize XE “AIOgetDACgroupFIFOsize”

	6.4.18 Analogue I/O Configuration
	6.4.18.1 Query ADC Software Bipolar/Unipolar Settings — AIOgetADCchanMode XE “AIOgetADCchanMode”
	6.4.18.2 Query ADC Hardware Bipolar/Unipolar Settings — AIOgetHWADCchanMode XE “AIOgetHWADCchanMode”
	6.4.18.3 Configure ADC Software Bipolar/Unipolar Settings — AIOsetADCchanMode XE “AIOsetADCchanMode”
	6.4.18.4 Configure ADC Hardware Bipolar/Unipolar Settings — AIOsetHWADCchanMode XE “AIOsetHWADCchanMode”
	6.4.18.5 Configure ADC All Channels Bipolar or Unipolar — AIOsetAllADCchanMode XE “AIOsetAllADCchanMode”
	6.4.18.6 Query ADC Hardware Single-ended/Differential Settings — AIOgetHWADCchanDiff XE “AIOgetHWADCchanDiff”
	6.4.18.7 Configure ADC Hardware Single-ended/Differential Settings — AIOsetHWADCchanDiff XE “AIOsetHWADCchanDiff”
	6.4.18.8 Query ADC Hardware Gain Settings — AIOgetHWADCchanGain XE “AIOgetHWADCchanGain”
	6.4.18.9 Configure ADC Hardware Gain Settings — AIOsetHWADCchanGain XE “AIOsetHWADCchanGain”
	6.4.18.10 Query DAC Software Bipolar/Unipolar Settings — AIOgetDACchanMode XE “AIOgetDACchanMode”
	6.4.18.11 Query DAC Hardware Bipolar/Unipolar Settings — AIOgetHWDACchanMode XE “AIOgetHWDACchanMode”
	6.4.18.12 Configure DAC Software Bipolar/Unipolar Settings — AIOsetDACchanMode XE “AIOsetDACchanMode”
	6.4.18.13 Configure DAC Hardware Bipolar/Unipolar Settings — AIOsetHWDACchanMode XE “AIOsetHWDACchanMode”
	6.4.18.14 Configure DAC All Channels Bipolar or Unipolar — AIOsetAllDACchanMode XE “AIOsetAllDACchanMode”
	6.4.18.15 Query DAC Hardware Output Range Settings — AIOgetHWDACchanRange XE “AIOgetHWDACchanRange”
	6.4.18.16 Configure DAC Hardware Output Range Settings — AIOsetHWDACchanRange XE “AIOsetHWDACchanRange”

	6.4.19 Analogue Input
	6.4.19.1 Set ADC Conversion Trigger Source — AIOsetADCconvSource XE “AIOsetADCconvSource”
	6.4.19.2 Set ADC Current Channel in Multiplexer — AIOsetADCmultiplexer XE “AIOsetADCmultiplexer”
	6.4.19.3 Software-trigger ADC Conversion — AIOstartADCconversion XE “AIOstartADCconversion”
	6.4.19.4 Read ADC Data — AIOgetADCdata XE “AIOgetADCdata”
	6.4.19.5 Set ADC Start Acquisition Trigger — AIOsetADCstartAcquisitionTrigger XE “AIOsetADCstartAcquisitionTrigger”
	6.4.19.6 Get ADC Pre-trigger Count — AIOgetADCpretriggerCount XE “AIOgetADCpretriggerCount”

	6.4.20 Analogue Output
	6.4.20.1 Write DAC Data — AIOsetDACchanData XE “AIOsetDACchanData”
	6.4.20.2 Set DAC Conversion Trigger Source — AIOsetDACconvSource XE “AIOsetDACconvSource”
	6.4.20.3 Set DAC Waveform Data — AIOsetDACchanWaveform XE “AIOsetDACchanWaveform”
	6.4.20.4 Software-trigger DAC Conversion — AIOstartDACconversion XE “AIOstartDACconversion”

	6.4.21 Support for HP VEE
	6.4.21.1 Timer Counter Functions In HP VEE.

	6.4.22 Legacy Analogue I/O Functions
	6.4.22.1 Set PC27 Multiplexer Register — PC27SetMultiplexer XE “PC27SetMultiplexer”
	6.4.22.2 Start PC27 ADC Conversion — PC27StartConversion XE “PC27StartConversion”
	6.4.22.3 Read PC27 ADC Data — PC27getData XE “PC27getData”
	6.4.22.4 Write PC27 DAC Data — PC24setData XE “PC24setData”

	6.4.23 Driver Interface Functions
	6.4.23.1 Send IOCTL Instruction — DIO_TC_IOCTL XE “DIO_TC_IOCTL”

	6.5 Library Error Codes

	7 IOCTL INTERFACE
	7.1 About this Chapter
	7.2 About the Driver
	7.2.1 Driver Architecture

	7.3 The IOCTL Commands Supported
	7.3.1 Interrupt Data Transfer Types Supported

